

SC6DI06692

D8.9.1 - COOKBOOK FOR TRANSLATING RELATIONAL
DATA MODELS TO RDF SCHEMAS

Deliverable

2

DOCUMENT METADATA

Property Value

Release date 27/02/2013

Status: Acceptance

Version: 0.06

Authors:
Phil Archer W3C
Nikolaos Loutas, PwC EU Services
Stijn Goedertier, PwC EU Services

Reviewed by: Joao Frade, PwC EU Services

Approved by:

DOCUMENT HISTORY

Version Description Action

0.01 Creation Creation

0.02 ToC delivered for review Review

0.03 Completion of main text Review

0.04 Updates throughout the document Update

0.05 Tools section added Update

0.06 Delivered for acceptance For acceptance

3

This report was prepared for the ISA programme by:

PwC EU Services

Disclaimer:

The views expressed in this report are purely those of the authors and may not, in any

circumstances, be interpreted as stating an official position of the European Commission.

The European Commission does not guarantee the accuracy of the information included in this

study, nor does it accept any responsibility for any use thereof.

Reference herein to any specific products, specifications, process, or service by trade name,

trademark, manufacturer, or otherwise, does not necessarily constitute or imply its

endorsement, recommendation, or favouring by the European Commission.

All care has been taken by the author to ensure that s/he has obtained, where necessary,

permission to use any parts of manuscripts including illustrations, maps, and graphs, on which

intellectual property rights already exist from the titular holder(s) of such rights or from her/his or

their legal representative.

4

TABLE OF CONTENTS

SC6DI06692 .. 1

D8.9.1 - Cookbook for Translating Relational Data Models to RDF Schemas 1

Deliverable ... 1

Document Metadata .. 2

Document History .. 2

Table of Contents .. 4

List of Figures .. 5

List of Tables ... 5

1 Introduction... 6

1.1 Objectives ... 6

1.2 Motivation ... 7

1.3 Scope .. 7

1.4 Overview of the Process ... 8

1.5 Structure ... 8

2 Re-use When Possible, Mint When Necessary ... 10

2.1 Existing Key Vocabularies & Their Namespaces ... 10

2.2 Finding existing vocabularies ... 15

2.3 Sub classes and sub properties ... 18

2.4 Minting new terms .. 19

3 Creating Your Schema – A Worked Example .. 20

3.1 Namespaces and metadata .. 21

3.2 A Simple Class ... 22

3.3 Multilingualism .. 23

3.4 Defining a Sub Class .. 24

3.5 A Data Type Property ... 24

3.6 An Object Type Property .. 25

3.7 Domains, Ranges and Inferencing ... 26

3.8 Describing Your Use of Other People's Terms .. 27

3.9 Tool support .. 28

4 Publishing Your Schema .. 30

4.1 Choosing a Namespace ... 30

4.2 Hash or Slash? ... 31

4.3 Publicise Your Work! .. 31

5 Summary .. 32

Annex I. Turtle Examples ... 34

Annex II. The Complete CPSV Schema ... 35

References .. 39

5

LIST OF FIGURES

Figure 1: Joinup online search service .. 16

Figure 2: Screenshot for 'description' in Linked Open Vocabularies (screenshot taken 2013-02-

21) ... 17

Figure 3: The UML diagram for the Core Public Service Vocabulary ... 20

Figure 4 Part of the graph of the CPSV produced by the W3C Validator 29

Figure 5: ISA's 10 Rules for persistent URIs ... 30

Figure 6: Transforming a domain model into an RDF schema ... 32

Figure 7: Good practices for the development of an RDF schema ... 33

LIST OF TABLES

Table 1 An incomplete list of key vocabularies, some familiarity with which is essential for

designing schemas in the public sector. ... 15

6

1 INTRODUCTION

Semantic agreements, such as common vocabularies and schemas, are developed through a

multi-stage process, typically by a group of people working to solve a common problem. The

ISA Programme of the European Commission has created a process and methodology for

developing such semantic agreements [PMDSA], based on good practices set by major

standardisation organisations, such as W3C.

The outcome of such modelling initiatives usually focuses on a Domain Model (a relational data

model) that shows the classes, properties and relationships as this greatly aids human

understanding of the information space. Domain Models are typically drawn using Unified

Modelling Language [UML] class diagrams. However such diagrams may not be fully

conformant with UML's many powerful and sophisticated features so that that the term 'UML

class diagram' should often be interpreted loosely.

In order to achieve interoperability between two systems that need to seamlessly exchange

data, a conceptual Domain Model needs to be implemented in a machine-readable and –

understandable format, such as XML or RDF.

This cookbook provides guidance for the person who has the task of translating the Domain

Model into an RDF schema.

Schemas exist to provide the necessary semantics to enable the correct interpretation of

instance data and to facilitate consistency between multiple data publishers. It is important that

schemas are error free. They are a reference point for both machines and human data

modellers and it is arguable which of those is the more pedantic.

1.1 OBJECTIVES

This document is designed to help people who wish to create an RDF schema, almost certainly

beginning with a Domain Model expressed as a UML class diagram.

The end result should be a schema that:

• does not replicate existing, widely used terms;

• creates sub classes, sub properties and super classes where appropriate;

• does not accidentally add new semantics to existing terms;

• offers well defined terms with well designed, persistent URIs;

• is published in multiple formats for consumption by humans and machines;

• is likely to remain stable for the long term;

• is discoverable.

7

1.2 MOTIVATION

In a remarkably short time, the world has become used to the World Wide Web. Its success is

due largely to its distributed nature and the ability of anyone anywhere to publish their work and

to link to other items. Linked data applies the same principles to data – it's how the world can

share its data at Web scale.

Important in this vision of shared data is a common approach to modelling data based on

vocabularies that, again, anyone can publish. That said, interoperability is greatly enhanced

when data publishers re-use each other's vocabularies and confidence in data is greatly

increased when engineers follow best practice. The motivation for this document is therefore to

make publishing vocabularies as simple as possible for individuals with some knowledge, but

not necessarily specialist knowledge, of the subject.

Linked data is a significant contributor to the ISA Programme's overall aim of Joining Up

Governments.

This document acts as a companion to ISA’s Process and Methodology For Developing

Semantic Agreements [PMDSA], expanding significantly on the implementation section relating

to the creation and publication of an RDF schema.

1.3 SCOPE

The cookbook assumes a basic knowledge of concepts in vocabulary design such as classes,

sub classes, properties and relationships. These concepts are independent of any encoding

language used and are fully supported in RDF.

This document is not a general primer on RDF and uses the following terms without further

explanation:

• URI

• graph

• triple

• subject

• predicate

• object

• namespace

• prefix

8

These terms and more are explained in the W3C RDF Primer [PRIMER] and there are many

books available on the subject. In Annex I we do, however, provide sufficient guidance on how

to read RDF for the purposes of this document.

One aspect that is worth highlighting for the current discussion is that RDF practitioners do not

usually talk about relationships and properties (as one would come across in a typical UML

class diagram); the equivalent terms are object type property and datatype property respectively

(these are defined in the Web Ontology Language [OWL]).

1.4 OVERVIEW OF THE PROCESS

The process of creating an RDF schema for a new Domain Model can be summarised as

follows:

1. research existing terms and their usage and maximise re-use of those terms;

2. where new terms can be seen as specialisations of existing terms, create sub class and

sub properties as appropriate;

3. where new terms are required, create them following commonly agreed best practice in

terms of naming conventions etc.;

4. publish within a highly stable environment designed to be persistent;

5. publicise the vocabulary by registering it with relevant services.

The preceding list is very terse and perhaps over simplified. It assumes that the person tasked

with creating the RDF schema is beginning work after development of the vocabulary itself has

been completed. This is not an ideal way to proceed – it is much better to include the creation of

the RDF schema as part of the vocabulary development process itself. Although a working

group will focus its attention on a diagrammatic representation of the vocabulary as it emerges,

creating the RDF vocabulary simultaneously avoids any unexpected problems and confusion in

the later stages. In particular, re-use of widely known terms can help to ensure that the new

terms will be seen as part of the existing landscape and not something entirely new.

1.5 STRUCTURE

The document follows the structure suggested by the bullet points above. I

n section 2 we review existing vocabularies, their key features and how to find more. This leads

to a discussion of when it is appropriate to create sub classes and sub properties of existing

terms and when one should mint entirely new ones.

In section 3 we work through an example, creating an RDF schema for a real world vocabulary.

9

Section 4 considers how to actually publish the schema and points to further existing

documentation on this topic.

Finally, section 5 concludes the document.

A very brief introduction to writing RDF in Turtle is provided in Annex I.

10

2 RE-USE WHEN POSSIBLE, MINT WHEN NECESSARY

Vocabulary and ontology design is not a new field - it long pre-dates the World Wide Web - and

the chances are that whatever the domain of your vocabulary, someone else has done it

already. It's important to build on, not try to replicate, this work. That is, it is important to re-use

existing vocabularies. There are several reasons for this.

Firstly, it greatly aids interoperability . Use of dcterms:created , for example, the value for

which should be a data typed date such as 2013-02-21^^xsd:date , is immediately

processable by many machines. If your schema encourages data publishers to use a different

term and date format, such as ex:date "21 February 2013" – data published using your

schema will require further processing to make it the same as everyone else's. An individual

tasked with processing those dates will almost certainly set out to convert to standard date

formats and the Dublin Core created term so by using these from the outset, data is

immediately more re-usable.

Secondly it adds credibility to your schema – it shows it has been published with care and,

again, this promotes its re-use.

Finally, it's easier . The classes and properties in the vocabularies listed in section 2.1, and

others, are well defined and properly hosted. Re-using them avoids your having to replicate that

effort.

Before creating any new terms in any vocabulary, it is important therefore to make sure that

those terms do not already exist. If they do – re-use them!

If something like it already exists but you want to be more specific, create a sub class or sub

property. Only if there is nothing that matches the class or property in your vocabulary should

you mint a new term.

2.1 EXISTING KEY VOCABULARIES & THEIR NAMESPACES

The ISA programme has created the following vocabularies which are made available as

reusable RDF schemas:

• 4 eGovernment core vocabularies1, namely Core Person, Registered Organisation

(originally known as Core Business), Core Location and Core Public Service;

• The Asset Description Metadata Schema (ADMS)2; and

1 https://joinup.ec.europa.eu/community/core_vocabularies/description
2 https://joinup.ec.europa.eu/asset/adms/release/100

11

• The Asset Description Metadata Schema for Open Source Software (ADMS.SW)3.

The table below provides a list of existing vocabularies that anyone creating a new RDF

schema ought to be aware of. The danger in providing such a list is that it cannot be complete,

there are always other vocabularies that you could re-use and you should seek these out.

Conversely, not all of these will be relevant to you. Please see this list as a starting point, not an

end.

Name Usual prefix Description

RDF rdf RDF has some basic properties of its own and terms from

this vocabulary appear in almost all RDF data.

Base URI http://www.w3.org/1999/02/22-rdf-syntax-ns#

Key properties include rdf:type (which can be written as

simply 'a' in Turtle).

Key class is Resource – the super class for all classes.

RDFS rdfs The W3C schema for describing schemas. Terms from this

vocabulary are used to define classes, properties, sub

classes, sub properties etc.

Base URI http://www.w3.org/2000/01/rdf-schema#

Key properties include label, comment, description,

subClassOf, subPropertyOf

Key classes are Class and Property.

XML Schema xsd Rather than invent its own datatypes, RDF re-uses those

defined in XML Schema.

Base URI http://www.w3.org/2001/XMLSchema#

Key data types include date, dateTime, anyURI, boolean,

integer, float

Dublin Core dcterms

(sometimes

The Dublin Core Metadata Initiative (named after the city in

Ohio where the first meeting was held) is the vocabulary for

describing publications and a great deal more. It is highly

3 https://joinup.ec.europa.eu/asset/adms_foss/release/release100

12

Name Usual prefix Description

dct) stable and massively implemented.

Base URI http://purl.org/dc/terms/

Key properties include title, description, creator, created,

lastModified.

Key classes include Agent, Location,

Web

Ontology

Language

owl OWL is a powerful language that encodes formal description

logic. Much of its power is out of scope for simple vocabulary

design however there are some properties that are very likely

to be needed.

Base URI http://www.w3.org/2002/07/owl#

Key classes include: DatatypeProperty, ObjectProperty

Key properties include equivalentClass, equivalentProperty,

sameAs.

Friend of a

Friend

foaf Developed simultaneously with the 2004 RDF standards, the

FOAF vocabulary is massively used to describe people and

their social networks, including by Facebook.

Base URI http://xmlns.com/foaf/0.1/

Key properties include name, homepage, primaryTopicOf,

mbox

Key classes include Agent and its sub classes Person,

Organization and Group.

N.B. foaf:Agent and dcterms:Agent are (OWL) equivalent

classes. This means that, for example, all instances of

foaf:Person are also instances of dcterms:Agent.

Responsibility for maintenance of FOAF rests with two

individuals which might raise questions about its long term

stability, however, an agreement with the Dublin Core

Metadata Initiative is in place such that the latter would take

on responsibility in the event of the current owners becoming

13

Name Usual prefix Description

unwilling or unable to do so [DCMI-FOAF].

Simple

Knowledge

Organization

System

skos SKOS is used to encode controlled vocabularies, lists etc.

Such lists, known as concept schemes in SKOS, can define

terms as being equivalent to each other, narrower, broader

etc. Outside Concept schemes, SKOS is used extensively to

label resources and to provide data-typed literals.

Base URI http://www.w3.org/2004/02/skos/core#

Key class is skos:Concept

Key properties are prefLabel, altLabel and notation.

If you need to make comments about the labels, then you

need the SKOS-XL extension [SKOSXL]

ORG &

RegOrg

org, rov Originally developed to describe organisations in the UK

public sector, the Organization Ontology can be applied to

any kind or organisational structure including virtual

organisations, commercial bodies and more. It offers

mechanisms for describing hierarchies, staff, reporting

structures, roles, locations and more.

Base URI http://www.w3.org/ns/org#

Key classes: Organization, FormalOrganization

key properties: hasUnit, classification

RegOrg – the Registered Organization Vocabulary, is a

profile of ORG that is designed specifically to describe

businesses that have legal entity status through a

registration process.

Key class: RegisteredOrganization

key property: registration which links to an adms:Identifier

(see below).

The RDF

Data Cube

qb This vocabulary supports the publication of statistics as

linked data. They are conceptualised as a hyper cube and

14

Name Usual prefix Description

Vocabulary the vocabulary is compatible with SDMX [QB].

Base URI http://purl.org/linked-data/cube#

Functional

Requirements

for

Bibliographic

Records

frbr This vocabulary is from the library world and is important for

differentiating between a conceptual item and its

manifestation in the real world. For example, a piece of

music can exist as sheet music, a live performance, a

particular recording, an individual copy of a recording and so

on.

Base URI http;//purl.org/vocab/frbr/core#

Key classes: Work, Expression, Manifestation

The data

catalogue

vocabulary,

DCAT.

dcat This is the vocabulary used by many open data catalogues

around the world, including CKAN and OGPL.

Base URI http://www.w3.org/ns/dcat#

Key classes: Catalog, Dataset, Distribution

Asset

Description

Metadata

Schema,

ADMS

adms ADMS is similar to DCAT and has many properties in

common. However it is designed specifically to describe

catalogues of code lists, standards and other 'semantic

assets' as opposed to datasets.

The Identifier class is important as it allows for descriptions

of an identifier – when it was issued and by whom etc.

Base URI http://www.w3.org/ns/adms#

Key classes: SemanticAssetRepository, SemanticAsset,

SemanticAssetDistribution, Identifier

Schema.org schema Schema.org is a collaboration between the major search

engines and stands apart from other vocabularies in that it

duplicates many well known classes and properties within its

namespace. It is designed to help search engines make

greater sense of otherwise unstructured Web pages. This

does not mean that all terms within schema.org are used by

the search engines.

15

Name Usual prefix Description

It takes a deliberately simple approach to information space

and so is unlikely to be useful for detailed modelling on its

own. However, it provides a handy set of classes and

properties that are widely understood and often directly

equivalent to those defined elsewhere.

Base URI http://schema.org/

Key classes: CreativeWork, Event, LocalBusiness etc.

Table 1 An incomplete list of key vocabularies, som e familiarity with which is essential for

designing schemas in the public sector.

For emphasis, this list is not complete – there will always be more vocabularies that are well

used for particular domains but this is a reasonable starting point for public sector information.

NB: We refer the interested reader to the work of Stadtmuller et al. [STAD], who provide a set of

metrics indicating the popularity of classes and properties of different vocabularies, based on

the Billion Triple Challenge dataset.

2.2 FINDING EXISTING VOCABULARIES

Several services exist for finding existing vocabularies. The European Commission's Joinup

platform is one example4 and a useful resource specifically for finding existing RDF

vocabularies is the Linked Open Vocabularies repository5 [LOV].

Joinup, the online service of the European Commission, makes it easier for public

administrations to find and re-use semantic assets. Semantic assets are highly reusable

metadata (e.g. xml schemas, generic data models) and reference data (e.g. code lists,

taxonomies, dictionaries, vocabularies) that are used by public administrations, in their

information systems, to share information.

More than one thousand assets from seventeen organisations, including several Member States

and standardization bodies, can be found via the European Commission Joinup Portal6. By

increasing the visibility and promoting the re-use of existing semantic assets the European

Commission fosters semantic interoperability among information systems developed in different

Member States.

4 http://goo.gl/Ea9bg
5 http://lov.okfn.org
6 https://joinup.ec.europa.eu/catalogue/all

16

This service is powered by the ADMS, which is a standardised metadata vocabulary that helps

public administrations, standardisation bodies and other stakeholders to document their

semantic assets in a uniformed and structured manner (e.g. name, status, version, where they

can be found on the Web, etc).

First, Joinup helps you to find
interoperability assets available in
different websites via a single search

Then, Joinup helps you navigate through
assets by applying search filters

Finally, the search gives you detailed
information about the asset including the
website from where it can be downloaded

2

1

3

Figure 1: Joinup online search service

The LOV repository began life in the Data Lift project7 and is now associated with the Open

Knowledge Foundation. LOV is very useful and gives a comprehensive view of the available

vocabularies. It makes them searchable and it's easy to drill down into what you need. Unlike

Joinup, which covers a broader spectrum of reusable semantic assets, LOV focuses on Linked

Data vocabularies.

Vocabularies on LOV are described by metadata, classified by vocabulary spaces, and

interlinked using Vocabulary of a Friend (VOAF). LOV allows querying either at vocabulary

level or at element level, exploring the vocabulary content using full-text faceted search, and

finding metrics about the use of vocabularies in the Semantic Web.

The only drawback is that it does not offer any guidance on quality and stability. When deciding

whether or not to use a term from an existing vocabulary one must use one's own judgement.

There are two key questions to ask:

1. is it stable and/or subject to a formal change process?

2. is it already widely used?

7 http://datalift.org/

17

All the ones mentioned in the figure below fulfil these criteria as do many others – Good

Relations [GR], the Bibliographic Ontology [BIBO] and Creative Commons [CC] for example. It

is possible that a vocabulary may be found that appears to fit your needs perfectly but that does

not appear to be in widespread use. In this case, the research task is to identify why this is so.

Common reasons include:

• the vocabulary is the work of a small number of individuals who did not succeed in

building a community around their effort;

• the vocabulary has not been promoted sufficiently;

• the vocabulary is subject to restrictive licence terms and is effectively unavailable for

reuse;

• a more popular vocabulary is already in use that does a similar job.

In the first two cases, the authors may welcome an approach from an outside party to help

stabilise and promote their work. In the third case, developers of open standards should be

wary of infringing copyright and should probably steer well clear. If the fourth case applies then

this is a signal that the more popular vocabulary would likely be a better choice. This can be

frustrating as it does inevitably lead to compromises being made, however, the aim is to make

data interoperable and for that reason large scale deployment trumps semantic correctness.

Figure 2: Screenshot for 'description' in Linked Ope n Vocabularies (screenshot taken 2013-02-21)

18

2.3 SUB CLASSES AND SUB PROPERTIES

Vocabularies, such as those listed in Table 1, often include terms that are very generic. For

example, the ORG Ontology's classification property; quoting from the specification:

The ontology does not provide category structures for organization type, organization purpose

or roles. Different domains will have different requirements for classification of such concepts.

Instead the ontology provides just the core base concepts needed to allow extensions to add

specific sub-class structures or classification schemes as required. Users of the ontology are

encouraged to define profiles which strengthen interoperability by specifying particular

controlled vocabularies to use for these concepts.

The Registered Organization [ROV] vocabulary is an example of such a profile. It defines three

sub properties of org:classification:

• companyType

• companyStatus

• companyActivity

All three of these are used to provide different kinds of classification, that is, they are all

classifications, but they have tighter semantics than the simple org:classification

property. Class and sub classes operate in the same way. All mammals are animals, not all

animals are mammals, therefore mammal is a sub class of animal. By creating these sub class

and sub property relationships, systems that understand the super property or super class may

be able to interpret the data even if the more specific terms are unknown.

As with simple re-use, defining terms as sub properties and sub classes gives potential users of

your schema confidence that you have surveyed the current landscape and have added to it.

It is sometimes tempting to create sub classes and sub properties simply to allow you to use

your own term for something that already exists. For example, you may want to define a term of

'author' and so be tempted to define a new class of Author as a sub class of

dcterms:Creator .

Don't ..

dcterms:Creator is one of the most used properties in linked data and, in data modelling

terms, has exactly the same meaning as 'author' in the publishing world. If the semantics match,

use the term directly, even if you don't much care for the actual term used. If your semantics are

more precise than those in an existing vocabulary, create your sub class/sub property.

19

2.4 MINTING NEW TERMS

If your vocabulary diagram has classes and properties that do not appear in any existing

vocabulary in which you have confidence, then of course you need to create the new term.

When doing so, bear in mind the following naming conventions:

• properties begin with a lower case letter, e.g. rdfs:label ;

• use camel case if a term has more than one word, e.g. foaf:isPrimaryTopicOf ;

• classes begin with a capital letter and are always singular, e.g. skos:Concept ;

• data type properties should be nouns, e.g. dcterms:description ;

• object properties should be verbs, e.g. org:hasSite .

We'll explore these ideas further in section 3 which works through an example.

20

3 CREATING YOUR SCHEMA – A WORKED EXAMPLE

Figure 3 shows the UML diagram for the Core Public Service Vocabulary8, developed by a

working group operating under the ISA Programme. We will work through it to create the RDF

schema, noting various decision points along the way. The complete schema is included in

Annex II.

Figure 3: The UML diagram for the Core Public Service Vocabulary

The first thing to notice is that some terms are prefixed, others are not. The text accompanying

the diagram states that all terms are in the cpsv namespace unless otherwise shown. It is a

matter of personal choice whether this pattern is followed or whether you prefer to make all

prefixes explicit. Either way, what is clear is that even within the diagram, the re-use of

several terms is already planned .

8 https://joinup.ec.europa.eu/asset/core_public_service/asset_release/core-public-service-vocabulary

21

The alternative approach is to ignore all other vocabularies until you come to create the

schema. This allows you to draw the diagram as you see fit but has the distinct disadvantage

that you then end up creating a schema that doesn't appear to match the diagram.

In the CPSV it would have been possible, for example, to include a class of 'Office' where the

public service was available. When creating the schema this would have then become

dcterms:Location – something that is very likely to cause confusion. Better to include the

existing terms you plan to use in the diagram from the start.

The task ahead of us now is to create the schema for all the classes and properties in the

CPSV.

3.1 NAMESPACES AND METADATA

First things first, we will define the namespaces we're going to use:

@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.

@prefix dcterms: <http://purl.org/dc/terms/>.

@prefix foaf: <http://xmlns.com/foaf/0.1/>.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema #>.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-synt ax-ns#>.

@prefix vann: <http://purl.org/vocab/vann/>.

@prefix owl: <http://www.w3.org/2002/07/owl#>.

@prefix adms: <http://www.w3.org/ns/adms#>.

@prefix frbr: <http://purl.org/vocab/frbr/core#>.

@prefix cpsv: <http://purl.org/vocab/cpsv#>.

It's important that the schema itself includes metadata – that is, data about itself.

<http://purl.org/vocab/cpsv> a owl:Ontology, adms:S emanticAsset;

 dcterms:title "Core Public Service Vocabulary"@en ;

 dcterms:description "The Core Public Service Voca bulary (CPSV) is

 designed to make it easy to exchange basic inform ation about the

 functions carried out by the public sector and th e services in which

 those functions are carried out."@en;

 dcterms:created "2013-02-06"^^xsd:date;

 dcterms:modified "2013-02-24"^^xsd:date;

 vann:preferredNamespacePrefix "cpsv";

 foaf:homepage

<http://joinup.ec.europa.eu/asset/core_public_servi ce/description>;

 dcterms:publisher [foaf:name "European Commission "];

 dcterms:creator [foaf:name "Core Public Service W orking Group";

foaf:homepage

22

<http://joinup.ec.europa.eu/asset/core_public_servi ce/document/core-

public-service-working-group>.];

 dcterms:type <http://purl.org/adms/assettype/Onto logy>;

 dcterms:status <http://purl.org/adms/status/Under Development>.

It is common practice to use the Dublin Core metadata set to provide information about

publications. Several terms in the metadata come from ADMS [ADMS] … which makes

extensive use of Dublin Core. The vann namespace may be less familiar. It's from A vocabulary

for annotating vocabulary descriptions [VANN] and has a couple of very useful properties. We

use vann:preferredNamespacePrefix in the CPSV. Prefixes can be more or less any

string of characters but by sticking to the conventional prefixes your schema will be easier to

read. There's a really useful prefix lookup service that depends on this common practice9. There

is no guarantee or requirement that your prefix is unused by others – that's what URIs are for –

but of course it's better to choose one that is.

The other useful property in the vann namespace is vann:usageNote which we'll come back

to in section 3.8.

3.2 A SIMPLE CLASS

Time to define our first term. There is no right or wrong order to define terms within the RDF

schema – machines don't care – follow whichever patterns works for you, but it is generally best

to follow the order in your documentation.

The documentation for the CPSV begins with a definition of the public service class so we will

start with that.

cpsv:PublicService a rdfs:Class, owl:Class;

 rdfs:label "Public Service"@en;

rdfs:comment "This class represents the service its elf. As noted

in the scope, a public service is the capacity to c arry out a

procedure and exists whether it is used or not. It is a set of

deeds and acts performed by or on behalf of a publi c agency for

the benefit of a citizen, a business or another pub lic

agency."@en;

 rdfs:isDefinedBy <http://purl.org/vocab/cpsv> .

9 http://prefix.cc/

23

The definition begins by declaring that cpsv:PublicService is both an RDF and an OWL class.

The difference between the two is one that need not concern us in this discussion10. Notice that

the term uses camel case and that, as it is a class, it begins with a capital letter. Importantly, the

class has an rdfs:label and an rdfs:comment . The label is the natural language term

itself, e.g. ‘Public Service’ and the comment is the definitive text, e.g. a description or a

definition of the class.

Where the specification and schema exist as separate documents, the text is usually copied

and pasted from one to the other (section 4 has more to say about publishing). The label and

comment have both been language tagged. Wherever possible, provide the label and definition

in multiple languages.

The final property, rdfs:isDefinedBy , points to the schema itself as the defining document.

This makes it clear the this is the defining schema.

3.3 MULTILINGUALISM

It is an unfortunate truth that most vocabularies are published with labels in a single language.

This monolingualism is often part of the reason for the development of entire 'new' vocabularies

that nearly match an existing one. If a vocabulary term exists but is not available in your

language then you can easily publish new labels new labels and comments. For example, a

Greek developer might publish some RDF as follows:

cpsv:PublicService

rdfs:label "∆ηµόσια Υπηρεσία"@el ;

rdfs:comment "Η κλάση αυτή αναπαριστά µια δηµόσια υπηρεσία. Μια δηµόσια

υπηρεσία υποδηλώνει την δυνατότητα να εκτελεστεί µια συγκεκριµένη διαδικασία και

υπάρχει είτε χρησιµοποιείται είτε όχι. Μια δηµόσια υπηρεσία αποτελείται από ένα

σύνολο πράξεων που εκτελούνται από ή για λογαριασµό ενός δηµόσιου φορέα προς

όφελος ενός πολίτη, µιας επιχείρησης (ή οργανισµού) ή ενός άλλου δηµοσίου

φορέα."@el .

The URI for the term remains http://purl.org/vocab/cpsv#PublicService but now it has

multilingual labels. It is the URIs that machines care about – labels are just for humans – so

although a human may think in terms of Greek, to a machine it's the same as the English

language term.

10 According to the specification of OWL, owl:Class is defined as a subclass of rdfs:Class. The rationale for having a separate OWL class

construct lies in the restrictions on OWL DL (and thus also on OWL Lite), which imply that not all RDFS classes are legal OWL DL

classes. In OWL Full these restrictions do not exist and therefore owl:Class and rdfs:Class are equivalent in OWL Full.

24

3.4 DEFINING A SUB CLASS

In the CPSV, the Rule and Formal Framework classes are defined as being sub classes of

frbr:Expression thus:

cpsv:Rule a rdfs:Class, owl:Class;

 rdfs:subClassOf frbr:Expression;

 rdfs:label "Rule"@en;

rdfs:comment "The Rule class represents the specifi c rules,

guidelines or procedures that the Public Service fo llows.

Instances of the Rule class are FRBR Expressions, t hat is, a

concrete expression, such as a document, of the mor e abstract

concept of the rules themselves."@en;

 rdfs:isDefinedBy <http://purl.org/vocab/cpsv> .

In terms of the RDF this is simple to do using the RDF Schema [RDFS] property

rdfs:subClassOf . The bigger question perhaps is why this was done.

It's because a policy, or a set of guidelines, is a concept. That concept is given form when it is

communicated – i.e. expressed. The definition of a frbr:Expression is A class whose

members are a realization of a single work usually in a physical form [FRBRDF]. It means that

users of the CPSV can link a Public Service to a document that sets out the rules under which

that service operates without implying that the document defines those rules. This makes it

easier to use the vocabulary whilst remaining true to the semantics – and practicality is

important.

3.5 A DATA TYPE PROPERTY

The CPSV does not define ay data type properties (properties for which the value is a literal) as

Dublin Core provides all it needs, so as an example of a definition of a data type property we

will use one from the ORG ontology:

org:identifier a owl:DatatypeProperty, rdf:Property ;

 rdfs:label "identifier"@en;

 rdfs:label "identifiant"@fr;

 rdfs:domain org:Organization;

 rdfs:subPropertyOf skos:notation;

 rdfs:comment """Gives an identifier, such as a c ompany

registration number, that can be used to used to un iquely

identify the organization. Many different national and

international identifier schemes are available. The org ontology

is neutral to which schemes are used. The particula r identifier

scheme should be indicated by the datatype of the i dentifier

25

value. Using datatypes to distinguish the notation scheme used

is consistent with recommended best practice for `s kos:notation`

of which this property is a specialization."""@en;

rdfs:comment """Donne un identifiant, comme par exe mple le

numéro d'enregistrement d'une entreprise, qui peut être utilisé

comme identifiant unique pour l'Organisation. De no mbreux

schémas nationaux et internationaux sont disponible s. Cette

ontologie reste neutre par rapport au schéma utilis é. Le schéma

particulier utilisé devrait être indiqué par le `da tatype` de la

valeur de l'identifiant. Utiliser les datatypes pou r distinguer

les schémas de notation est cohérent avec les bonne s pratiques

pour `skos:notation` dont cette propriété est une

spécialisation."""@fr;

rdfs:isDefinedBy <http://www.w3.org/ns/org> .

Consistent with defining classes as both RDF and OWL classes, the ORG ontology declares

properties as RDF properties and either data type or object type properties. As with classes, the

property definition includes both an rdfs:label and rdfs:comment , and the ORG ontology

provides a rare example of a schema that is published in multiple languages. Incidentally, the

comments are enclosed in triple quotes. This is a feature of Turtle that allows strings to include

line breaks.

org:identifier is a property and therefore, by convention, begins with a lower case letter.

Furthermore, again by convention, as it is a data type property, it is a noun. It has a domain of

org:Organization . That is, one can infer that the subject of a triple is an instance of the

class org:Organization where org:identifier is the predicate. See section 3.7 for more

on this topic.

3.6 AN OBJECT TYPE PROPERTY

The CPSV defines a number of object properties (relationships). For example,

cpsv:hasInput is defined thus:

cpsv:hasInput a rdf:Property, owl:ObjectProperty;

 rdfs:label "has input"@en;

rdfs:comment "The hasInput property links a Public Service to

one or more instances of the Input class. A specifi c service

may require the presence of certain inputs or combi nations of

inputs in order to operate. These should be describ ed in an

application profile for a given service."@en;

rdfs:range cpsv:Input;

 rdfs:isDefinedBy <http://purl.org/vocab/cpsv> .

26

This is very similar to the definition of the data type property seen above – in RDF, the

difference between object type and data type properties is only apparent in the range statement.

The range definition here means that one can infer that the object of a triple is an instance of

the class cpsv:Input where cpsv:hasInput is the predicate. As this is a property, by

convention, it begins with a lower case letter. AS it is an object type property – i.e. a relationship

between two classes – it is a verb.

3.7 DOMAINS, RANGES AND INFERENCING

As we have seen in the previous two sections, defining domains and ranges for properties

allows inferences to be drawn about the nature of the subjects and objects. Many systems

make no such inference – it's one of the features of the Semantic Web and, particularly, OWL,

that is generally not used in linked data except as described below. However, inferences may

be drawn by users. Even where the machines make no use of inferences, domains and ranges

act as a guide to implementers to know how to use your schema to model their data, and to end

users to know how to query it.

To take a slightly contrived example: The CPSV makes a distinction between formal

frameworks, typically legislation, and rules, i.e. locally set policies and procedures that are

derived from that legislation. Hence a public service will follow a set of rules that implement the

formal framework. It would be perfectly possible for data that uses the CPSV to describe a

public service to use cpsv:implements rather than cpsv:follows to link a public service to

an instance of the Rule class – the world would not stop turning. However, this is not the

intention, it breaks the model, and therefore the data is harder to use.

Where inferencing is often done within linked data is at ingestion time. That is, when a set of

triples is ingested into a triple store, inferred triples may be explicitly generated. This is

particularly so for inverse pairs.

Using owl:inverseOf it is possible to declare that two properties are inverse pairs. FOAF

provides examples of this. Its schema declares

foaf:primaryTopic owl:inverseOf foaf:isPrimaryTopic Of .

Therefore, for any triple: A foaf:primaryTopic B , a triple store may automatically generate

a triple stating B foaf:isPrimaryTopicOf A .

Likewise, where properties and classes are sub properties and sub classes of others, additional

triples may be generated. The properties cpsv:uses and cpsv:provides are both sub

properties of cpsv:hasRole , therefore for every triple A cpsv:uses B it is also true that A

cpsv:hasRole B and triple stores may generate this triple at ingestion time. The advantage of

27

this is that queries that seek "all agents that play a role in the provision and use of a public

service" can be quickly answered. That information was present in the original data, the inferred

triples just make it easier to access.

Defining domains and ranges within your schema can be very helpful. If over-done, however, it

simply restricts use of the vocabulary to a very limited audience and this may be counter

productive. You can't make people use your technology in a particular way.

Looking at the cpsv:hasInput property again (section 3.6), notice that the range is defined as

cpsv:Input . That is, in a triple A cpsv:hasInput B, we can infer that B is 'an input.'

However, the domain is not restricted to the cpsv:PublicService class as might have been

tempting. This is because the concept of something being 'an input' to a process is far wider

than just the limited arena of public services. It would therefore be possible something other

than a public service to re-use the cpsv:hasInput . It is notable that many of the most widely

used properties have minimal restriction. The domain of both dcterms:description and

skos:prefLabel is rdf:Resource (i.e. anything) and the range if rdfs:Literal (any

literal, typed or not, language tagged or not). The domain of foaf:name is not restricted to

foaf:Person or even foaf:Agent (it's actually defined as owl:Thing).

The lesson here is that domains and ranges should be defined where they enhance the

semantics of the property but should not be used to impose unnecessary restrictions on its use.

3.8 DESCRIBING YOUR USE OF OTHER PEOPLE'S TERMS

The Dublin Core, FOAF and SKOS terms that appear in the UML class diagram of Figure 3 are

all used exactly as those vocabularies define so no further explanation is required within the

CPSV schema. However, there may be situations where you want to publish a machine

readable statement that says "this is how we use term X in our vocabulary." For example, we

may want to make the following statement about the CPSV's use of dcterms:requires . In

doing so, we do not want to redefine the term, just explain how it is used in this context. Here is

how this can be done using vannUsageNote :

dcterms:requires vann:usageNote "When used in the C PSV to link two

Public Services, it means that the operation of one service depends on

the successful operation of the other, perhaps by t aking the output of

one as input to the second. Such dependencies shoul d be defined in the

associated Rule. The use of dcterms:requires does n ot imply any

specific details of the dependency."@en.

28

Such a statement achieves our aim of giving information about how the CPSV uses the property

but it does not affect the semantics of the Dublin Core term.

You can go further and publish domain and range statements about terms in other vocabularies.

RDF semantics allow you to do this without affecting the original term, however: no one is

obliged to take any notice of your domain and range definitions and, it's worth asking, do you

really need to define a domain and range for a term you’re re-using?

3.9 TOOL SUPPORT

For small schemas, a simple text editor is sufficient. There are many available such as

Notepadd++11 and PSPad12. Make sure you use UTF-8 encoding, particularly for schemas that

involve non-ASCII characters (including accented Latin characters). Creating simple schemas

such as the CPSV is usually just a matter of copying, pasting and editing elements of an

existing schema.

If the schema is more complicated then you'll need a more specialised tool such as Top Braid

Composer13 or Protégé14. If you use one of these tools then you can be sure that the output will

be valid RDF, but if you use a text editor then it's imperative that you validate your work.

There are two key RDF validation tools on the Web. Joshua Tauberer's RDF validator and

converter is the essential online service for validating RDF written in Turtle. Simply paste your

RDF into the window, select "Notation 3 (or N-Triples/Turtle)" and press Validate! The output of

this tool includes the same RDF serialised in RDF/XML as well as the underlying triples.

The other tool is the W3C RDF Validator15. This has the advantage over the Joshua Tauberer's

tool in that it offers a visualisation – it generates a graph from your schema. The downside is

that it only accepts RDF/XML so, assuming you compose your schema in Turtle, you'll need to

copy and paste the output of Joshua Tauberer's tool into the W3C one.

Visualising the schema is very helpful in showing whether you have your relationships, sub

classes and properties all as you imagine them in your head. The graphs it produces are not

pretty but they are informative. Figure 4 shows part of the visualisation of the CPSV schema. In

the same way that spell checkers make sure that every word you type is a word, a validator just

checks your syntax. Whether your schema actually makes sense is another matter and the

visualised graph is by far the best way to spot any mistakes. The W3C validator will ensure that

11 http://notepad-plus-plus.org/
12 http://www.pspad.com/
13 http://www.topquadrant.com/products/TB_Composer.html
14 http://protege.stanford.edu/
15 http://www.w3.org/RDF/Validator/

29

your use of the rdf and rdfs namespaces is correct. It's very common to confuse the two and

write things like rdf:comment (it should be rdfs:comment). If you create your schema and

find that you have done it perfectly first time then you'll probably be the first person in history to

do so.

Figure 4 Part of the graph of the CPSV produced by the W3C Validator

30

4 PUBLISHING YOUR SCHEMA

A schema can be published by simply uploading either a Turtle or RDF/XML file on the Web

and, in theory, schemas do not have to be dereferencable. However, it should be

dereferencable at the URI given in the schema and, ideally, it should be available in multiple

representations for consumption by both humans and machines.

4.1 CHOOSING A NAMESPACE

The most important factor in choosing a namespace is that it must be stable. For other people

to have confidence on your schema they must first be confident that it will still be available in

several years' time and that the semantics will remain unchanged (see section 2.2). Do you

have access to a stable Web publishing environment? Can you be confident that the

namespace you choose will still dereference in 20 years' time? If your organisation can no

longer support the namespace, what will happen to it?

These questions are not necessarily easy to answer and there are many factors to bear in mind;

hence they are the focus of a separate recent study on URI persistence [URIP] that includes

several case studies and guidance notes. The findings of this study are summarised in Figure 5.

In short: URIs and the relevant hosting service must be designed for persistence. If no suitable

hosting environment is available then services such as purl.org can provide an easy path to

stability.

Figure 5: ISA's 10 Rules for persistent URIs

PURL.org16 is a free online service that can be used for registering and managing persistent

URIs. Instead of resolving directly to Web resources, PURLs provide a level of indirection that

16 http://purl.org/docs/index.html

31

allows the underlying Web addresses of resources to change over time without negatively

affecting systems that depend on them. This capability provides continuity of references to

network resources that may migrate from machine to machine for business, social or technical

reasons.

If you are likely to be publishing multiple vocabularies then it will be worth establishing an

environment specifically designed for the purpose. The Neoglism tool produced by DERI and

supported by others is specifically designed for this [NEO]. This tool automatically makes your

schema available in multiple formats and handles content negotiation to ensure that humans

see an HTML document generated from the RDF itself.

4.2 HASH OR SLASH?

In section 3 we looked in detail at the Core Public Service Vocabulary, the namespace for which

is http://purl.org/vocab/cpsv# - note the final # character. This means that, for

example, the full URI for the class cpsv:PublicService is

http://purl.org/vocab/cpsv#PublicService . By contrast, Dublin Core's namespace

http://purl.org/dc/terms/ ends with a / so that dcterms:creator is shorthand for

http://purl.org/dc/terms/creator . It's a matter of personal choice whether to use a #

or / character but it does have implications for publishing. Hash is simpler but many individuals

prefer the slash method – it's up to you. Both methods are explored in detail in the W3C's Best

Practice Recipes for Publishing RDF Vocabularies [BPR].

4.3 PUBLICISE YOUR WORK!

Once your schema is published you will want people to know about it. The community that

created the vocabulary will already be aware of it of course but you can reach a wider audience

by registering it on services like Joinup and LOV.

32

5 SUMMARY

The most important aspect of any vocabulary or ontology is that it describes the domain well.

That's a job for domain experts. Creating an RDF encoding of that vocabulary involves fitting

that domain expertise into the existing landscape of linked data vocabularies. That is a job for

someone with experience and knowledge of RDF vocabularies who can recognise that certain

concepts, properties and relationships are already well defined and that just need putting

together with the 'new' elements. The best results come when the two sets of experts work

closely together.

Figure 6 below summarises the steps that need to be taken in order to transform a domain

model into an RDF schema, while Figure 7 outlines a set of good practices for the development

of RDF schemas.

Start with a robust Domain Model developed following a structured process and

methodology.

6 steps for transforming a Domain Model into an RDF schema

Research existing terms and their usage and maximise re-use of those terms.

Where new terms can be seen as specialisations of existing terms, create sub

class and sub properties as appropriate.

Where new terms are required, create them following commonly agreed best

practice in terms of naming conventions etc

Publish within a highly stable environment designed to be persistent.

Publicise the RDF schema by registering it with relevant services.

Figure 6: Transforming a domain model into an RDF s chema

33

Create sub classes, sub properties and super
classes where appropriate.

Offer well defined terms with well designed,
persistent URIs.

Publish in multiple formats for consumption by
humans and machines.

Ensure that it remains stable for the long term.

Add metadata to make it discoverable.

Do not replicate existing, widely used terms.

Do not add new semantics to existing terms.

Good practices for

developing

RDF schemas

Figure 7: Good practices for the development of an RDF schema

34

ANNEX I. TURTLE EXAMPLES

Examples in the text are given using Turtle as this is most readable RDF syntax, more so than

the alternative syntaxes of RDF/XML or n-triples. Details of Turtle are given in its specification

[TTL] but the essentials are as follows:

URIs are enclosed in angle brackets thus: <http://example.com>.

Compact URIs [CURIE] such as dcterms:creator may be used in any position in a triple.

Triples end in a full stop.

Where the same property appears multiple times for the same subject, the values are separated

by commas. The most common example of this in schemas is where labels appear in multiple

languages. For example:

<http://example.com/def/dept>

 skos:prefLabel "Department"@en, " ∆ιεύθυνση"@el.

This encodes two triples that declare the preferred English and Greek language label for the

same thing.

Different properties and values for the same subject are separated by semi-colons thus:

<http://example.com/id/ministry/mareg> a org:Formal Organization;

 skos:prefLabel Ministry of Administrative Reform and e-

Governance"@en .

This declares two triples: the first states that the thing identified by

http://example.com/id/ministry/mareg is a Formal Organization, as defined in the org

namespace; and the second that it's preferred English language label is "Ministry of

Administrative Reform and e-Governance" (the keyword a is a shorthand way of writing

rdf:type).

35

ANNEX II. THE COMPLETE CPSV SCHEMA

The Core Public Service Vocabulary defines just 5 classes and 8 properties, all of which are

object type properties. The complete schema (correct at the time of writing) is reproduced

below. Any subsequent changes will be reflected in the schema itself published at the

namespace.

@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.

@prefix dcterms: <http://purl.org/dc/terms/>.

@prefix foaf: <http://xmlns.com/foaf/0.1/>.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema #>.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-synt ax-ns#>.

@prefix vann: <http://purl.org/vocab/vann/>.

@prefix owl: <http://www.w3.org/2002/07/owl#>.

@prefix adms: <http://www.w3.org/ns/adms#>.

@prefix frbr: <http://purl.org/vocab/frbr/core#>.

@prefix cpsv: <http://purl.org/vocab/cpsv#>.

metadata

<http://purl.org/vocab/cpsv> a owl:Ontology, adms:S emanticAsset;

 dcterms:title "Core Public Service Vocabulary"@en ;

 dcterms:description "The Core Public Service Voca bulary (CPSV) is designed

 to make it easy to exchange basic information abo ut the functions carried

 out by the public sector and the services in whic h those functions are

 carried out."@en;

 dcterms:created "2013-02-06"^^xsd:date;

 dcterms:modified "2013-02-24"^^xsd:date;

 vann:preferredNamespacePrefix "cpsv";

 foaf:homepage

<http://joinup.ec.europa.eu/asset/core_public_servi ce/description>;

 dcterms:publisher [foaf:name "European Commission "];

 dcterms:creator [foaf:name "Core Public Service W orking Group";

foaf:homepage

<http://joinup.ec.europa.eu/asset/core_public_servi ce/document/core-public-

service-working-group>.];

 dcterms:type <http://purl.org/adms/assettype/Onto logy>;

 dcterms:status <http://purl.org/adms/status/Under Development>.

classes

cpsv:PublicService a rdfs:Class, owl:Class;

 rdfs:label "Public Service"@en;

 rdfs:comment "This class represents the service i tself. As noted in the

 scope, a public service is the capacity to carry out a procedure and exists

 whether it is used or not. It is a set of deeds a nd acts performed by or on

 behalf of a public agency for the benefit of a ci tizen, a business or

 another public agency."@en;

36

 rdfs:isDefinedBy <http://purl.org/vocab/cpsv>.

cpsv:Input a rdfs:Class, owl:Class;

 rdfs:label "Input"@en;

 rdfs:comment "Inputs can by any resource - docume nt, artefact - anything. In

 a specific context it is likely to be useful to e ither define a sub class or

 declare the particular resource to also be of ano ther type as well. A

 general case might be a foaf:Document but where p ossible, it is better to

 refer to a controlled vocabulary of types. dcterm s:type should be used to

 use to provide this information linking to a SKOS Concept."@en;

 rdfs:isDefinedBy <http://purl.org/vocab/cpsv>.

cpsv:Output a rdfs:Class, owl:Class;

 rdfs:label "Output"@en;

 rdfs:comment "Outputs can by any resource - docum ent, artefact - anything.

 In a specific context it is likely to be useful t o either define a sub class

 or declare the particular resource to also be of another type as well. A

 general case might be a foaf:Document but where p ossible, it is better to

 refer to a controlled vocabulary of types. dcterm s:type should be used to

 use to provide this information linking to a SKOS Concept."@en;

 rdfs:isDefinedBy <http://purl.org/vocab/cpsv>.

cpsv:Rule a rdfs:Class, owl:Class;

 rdfs:subClassOf frbr:Expression;

 rdfs:label "Rule"@en;

 rdfs:comment "The Rule class represents the speci fic rules, guidelines or

 procedures that the Public Service follows. Insta nces of the Rule class are

 FRBR Expressions, that is, a concrete expression, such as a document, of the

 more abstract concept of the rules themselves."@e n;

 rdfs:isDefinedBy <http://purl.org/vocab/cpsv>.

cpsv:FormalFramework a rdfs:Class, owl:Class;

 rdfs:subClassOf frbr:Expression;

 rdfs:label "This class represents the legislation , policy or policies that

 lie behind the rules that govern the service. As with the Rule class, the

 Formal Framework class is a sub class of frbr:Exp ression, i.e. instances of

 the class are concrete expressions of the more ab stract concept of the piece

 of legislation or policy itself."@en;

 rdfs:isDefinedBy <http://purl.org/vocab/cpsv>.

properties (all of which are object type properti es)

cpsv:physicallyAvailableAt a rdf:Property, owl:Obje ctProperty;

 rdfs:label "physically available at"@en;

 rdfs:comment "A physical location at which a user may interact with the

 Public Service."@en;

 rdfs:domain cpsv:PublicService;

 rdfs:range dcterms:Location;

 rdfs:isDefinedBy <http://purl.org/vocab/cpsv>.

cpsv:hasInput a rdf:Property, owl:ObjectProperty;

37

 rdfs:label "has input"@en;

 rdfs:comment "The hasInput property links a Publi c Service to one or more

 instances of the Input class. A specific service may require the presence of

 certain inputs or combinations of inputs in order to operate. These should

 be described in an application profile for a give n service."@en;

 rdfs:range cpsv:Input;

 rdfs:isDefinedBy <http://purl.org/vocab/cpsv>.

 # No domain defined as this would hinder re-use o f the property

unnecessarily.

cpsv:produces a rdf:Property, owl:ObjectProperty;

 rdfs:label "produces"@en;

 rdfs:comment "The produces property links a Publi c Service to one or more

instances of the Output class which is its range."@ en;

 rdfs:range cpsv:Output;

 rdfs:isDefinedBy <http://purl.org/vocab/cpsv>.

 # No domain defined as this would hinder re-use o f the property

unnecessarily.

cpsv:implements a rdf:Property, owl:ObjectProperty;

 rdfs:label "implements"@en;

 rdfs:comment "The implements property links a Rul e to relevant legislation

 or policy documents i.e. the formal framework und er which the Rules are

 defined."@en;

 rdfs:domain cpsv:Rule;

 rdfs:range cpsv:FormalFramework;

 rdfs:isDefinedBy <http://purl.org/vocab/cpsv>.

cpsv:hasRole a rdf:Property, owl:ObjectProperty;

 rdfs:label "has role"@en;

 rdfs:comment "This very general property links an Agent to a Public Service

 in which it plays some role. Both 'provides' and 'uses' are sub properties

 of playsRole with specific semantics."@en;

 rdfs:domain dcterms:Agent;

 rdfs:range cpsv:PublicService;

 rdfs:isDefinedBy <http://purl.org/vocab/cpsv>.

cpsv:provides a rdf:Property, owl:ObjectProperty;

 rdfs:label "provides"@en;

 rdfs:comment "The provides property links an Agen t to a Public Service for

 which it is responsible. Whether it provides the service directly or

 outsources it is not relevant, the Agent that pro vides the service is the

 one that is ultimately responsible for its provis ion."@en;

 rdfs:subPropertyOf cpsv:hasRole;

 rdfs:isDefinedBy <http://purl.org/vocab/cpsv>.

cpsv:uses a rdf:Property, owl:ObjectProperty;

 rdfs:label "uses"@en;

 rdfs:comment "The uses property links an Agent to a Public Service in which

 it plays the specific role of user, meaning that it provides the input and

 receives the output but does not play any direct role in providing the

38

 service. This will typically be an individual cit izen or an outside

 organisation."@en;

 rdfs:subPropertyOf cpsv:hasRole;

 rdfs:isDefinedBy <http://purl.org/vocab/cpsv>.

cpsv:follows a rdf:Property, owl:ObjectProperty;

 rdfs:label "follows"@en;

 rdfs:comment "The follows property links a Public Service to the Rule(s)

 under which it operates."@en;

 rdfs:domain cpsv:PublicService;

 rdfs:range cpsv:Rule;

 rdfs:isDefinedBy <http://purl.org/vocab/cpsv>.

39

REFERENCES

[A11] Action 1.1 Improving semantic interoperability in European eGovernment

systems http://ec.europa.eu/isa/actions/01-trusted-information-exchange/1-

1action_en.htm

[ADMS] Asset Description Metadata Schema, Makx Dekkers (Editor), PwC EU Services,

 http://joinup.ec.europa.eu/asset/adms/home

[BIBO] The Bibliographic Ontology, Frédérick Giasson and Bruce D'Arcus.

http://bibliontology.com/

[BR] Best Practice Recipes for Publishing RDF Vocabularies, D. Berrueta, J. Phipps,

W3C Note 2008. http://www.w3.org/TR/swbp-vocab-pub/

[CC] Creative Commons Rights Expression Language

http://creativecommons.org/ns#

[CPSV] Core Public Service Vocabulary, European Commission/ISA Programme

http://joinup.ec.europa.eu/asset/core_public_service/asset_release/core-public-

service-vocabulary

[CURIE] CURIE Syntax 1.0, A syntax for expressing Compact URIs, M. Birbeck, S.

McCarron, W3C Working Group Note, 2010. http://www.w3.org/TR/curie/

[DC] DCMI Metadata Terms, Dublin Core Metadata Initiative.

http://dublincore.org/documents/dcmi-terms/

[DCAT] Data Catalog Vocabulary (DCAT), F. Maali, P. Archer, J. Erickson. W3C

Recommendations track http://www.w3.org/TR/vocab-dcat/

[DCMI-FOAF] Agreement between DCMI and the FOAF Project, 2011

http://dublincore.org/documents/dcmi-foaf/

[FOAF] Friend of a Friend

 http://xmlns.com/foaf/spec/

[FRBR] Functional Requirements for Bibliographic Records, IFLA 1998.

 http://www.ifla.org/publications/functional-requirements-for-bibliographic-records

[FRBRDF] Expression of Core FRBR Concepts in RDF. I. Davis, R. Newman, 2005.

 http://vocab.org/frbr/core

[GR] Good Relations Vocabulary, Martin Hepp http://purl.org/goodrelations/

40

[ISA] Interoperability Solutions for European Public Administrations,

http://ec.europa.eu/isa/

[LOV] Linked Open Vocabularies, Barnard Vatant and Pierre-Yves Vandenbussche

 http://lov.okfn.org/

[NEO] Neologism Web-based RDF Schema vocabulary editor and publishing system.

See http://neologism.deri.ie/

[ORG] An Organization Ontology, Dave Reynolds, October 2010. Soon to be

republished by W3C at http://www.w3.org/TR/gld-org/

[OWL] OWL 2 Web Ontology Language Document Overview (Second Edition). W3C

OWL Working Group. W3C Recommendation 2012 http://www.w3.org/TR/owl2-

overview/

[PMDSA] Process And Methodology For Developing Semantic Agreements, M.Dekkers,

N. Loutas, S. Goedertier, N. Van Hee, 2013. Under development for publication

on Joinup.

[PMDCV] Process and Methodology for Developing Core Vocabularies, 22 November

2011. https://joinup.ec.europa.eu/elibrary/document/isa-deliverable-process-

and-methodology-developing-core-vocabularies

[QB] The RDF Data Cube Vocabulary, D. Reynolds, R. Cyganiak, W3C

Recommendations track http://www.w3.org/TR/vocab-data-cube/

[RDF] RDF Primer, F. Manola, E. Miller W3C Recommendation 2004

http://www.w3.org/TR/rdf-primer/

[RDFS] RDF Vocabulary Description Language 1.0: RDF Schema D. Brickley, RV

Guha. W3C Recommendation 2004 http://www.w3.org/TR/rdf-schema/

[RFC 3066] H. Alvestrand, ed. RFC 3066: Tags for the Identification of Languages 1995.

Available at: http://www.ietf.org/rfc/rfc3066.txt

[ROV] The Registered Organization Vocabulary, P. Archer, A. Papantoniou, W3C

Recommendations Track, 2013 http://www.w3.org/TR/vocab-regorg/

[SKOS] SKOS Simple Knowledge Organization System Reference. A. Miles, S.

Bechofer. W3C Recommendation 2009. http://www.w3.org/TR/skos-reference/

[SKOSXL] SKOS Simple Knowledge Organization System eXtension for Labels (SKOS-

XL), W3C 2009. http://www.w3.org/TR/skos-reference/skos-xl.html

41

[STAD] Accessing information about Linked Data vocabularies with vocab.cc, S.

Stadtmuller, A. Harth, M. Grobelnik, Joint Conference of 6th Chinese Semantic

Web Symposium and the First Chinese Web Science Conference, 2012

 http://www.planet-data.eu/sites/default/files/publications/Accessing-Information-

about-Linked-Data-Vocabularies-with-vocab.pdf

[TOGM] Towards Open Government Metadata, V. Peristeras, DG DIGIT, ISA Unit,

September 2011

https://joinup.ec.europa.eu/sites/default/files/towards_open_government_metad

ata_0.pdf

[TTL] Turtle Terse RDF Triple Language. E. Prud'hommeaux, G. Carothers (Eds),

W3C Recommendation track document, 2013. http://www.w3.org/TR/turtle/

[URIP] Study on persistent URIs, with identification of best practices and

recommendations on the topic for the MSs and the EC. P. Archer, S.

Goedertier, N. Loutas, 2012. See

http://joinup.ec.europa.eu/community/semic/document/10-rules-persistent-uris

[VANN] A vocabulary for annotating vocabulary descriptions, I. Davis, 2005.

 http://vocab.org/vann/

[XSD] XML Schema Part 2: Datatypes Second Edition. W3C Recommendation 28

October 2004. http://www.w3.org/TR/xmlschema-2/#date

