

WP6

DIGIT B1 - EP Pilot Project 645

Deliverable 1: Code Review Results Report

Apache Core & APR

Specific contract n°226 under Framework Contract n° DI/07172 – ABCIII

 September 2016

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: Apache Core & APR Code Review Results

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 2 of 36

Author:

Disclaimer

The information and views set out in this publication are those of the author(s) and do not necessarily

reflect the official opinion of the Commission. The content, conclusions and recommendations set out in

this publication are elaborated in the specific context of the EU – FOSSA project.

The Commission does not guarantee the accuracy of the data included in this study. All representations,

warranties, undertakings and guarantees relating to the report are excluded, particularly concerning –

but not limited to – the qualities of the assessed projects and products. Neither the Commission nor any

person acting on the Commission’s behalf may be held responsible for the use that may be made of the

information contained herein.

© European Union, 2016.

Reuse is authorised, without prejudice to the rights of the Commission and of the author(s), provided

that the source of the publication is acknowledged. The reuse policy of the European Commission is

implemented by a Decision of 12 December 2011.

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2011:330:0039:0042:EN:PDF

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: Apache Core & APR Code Review Results

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 3 of 36

Report Summary

Title Apache Core & APR

Project Owner Apache Community

DIGIT Sponsor EU-FOSSA project

Author DIGIT

Type Public

Version V 0.5 Version date 10/10/2016

Reviewed by EU-FOSSA Team Revision date 31/10/2016

Approved by European Commission - Directorate-
General for Informatics (DIGIT)

Approval date To be
approved

 Nº Pages 36

Distribution list

Name and surname Area Copies

IT contacts To be identified To be identified

FOSS Communities Apache security Team 1

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: Apache Core & APR Code Review Results

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 4 of 36

Contents

CONTENTS .. 4

LIST OF TABLES ... 5

LIST OF FIGURES ... 6

ACRONYMS AND ABBREVIATIONS ... 7

1 INTRODUCTION ... 8

1.1. CONTEXT .. 8

1.2. OBJECTIVE .. 8

1.3. SCOPE .. 9

1.4. DELIVERABLES .. 9

2 EXECUTIVE SUMMARY ... 10

3 METHODOLOGY .. 12

3.1. PLANNING ... 13

3.2. EXECUTION ... 13

3.3. ASSESSMENT .. 16

4 CODE REVIEW DETAILS ... 18

4.1. INITIAL CONSIDERATIONS ... 18

4.2. PLANNING ... 20

4.3. OVERVIEW OF RESULTS ... 20

4.3.1. General Findings .. 21

4.3.2. Language-Specific Findings ... 23

4.4. DETAILED RESULTS ... 26

4.4.1. Specific C Controls ... 27

4.4.1.1. Variable Management .. 27

4.4.1.2. Memory Management .. 28

4.4.1.3. File I/O Management ... 29

4.4.2. Build Tool (build folder) .. 30

4.4.2.1. Variable Management .. 30

4.4.2.2. Memory Management .. 32

4.4.2.3. Signal and Error Handling .. 33

4.4.3. Findings controlled programmatically ... 34

4.4.3.1. Framework Requirements .. 34

5 TECHNICAL CONCLUSIONS... 36

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: Apache Core & APR Code Review Results

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 5 of 36

List of Tables

Table 1: Global risk evaluation .. 17

Table 2: Checklist general controls ... 21

Table 3: Check-list language-specific controls .. 23

Table 4: CBC-VMG-004 findings ... 27

Table 5: CBC-MEM-001 findings ... 28

Table 6: CBC-FIO-001 findings ... 29

Table 7: CBC-VMG-011 findings ... 30

Table 8: CBC-MEM-005 findings ... 32

Table 9: CBC-SEH-007 findings .. 33

Table 10: SCD-FWK-001 findings ... 34

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: Apache Core & APR Code Review Results

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 6 of 36

List of Figures

Figure 1: General overview ... 10

Figure 2: Risk Level ... 11

Figure 3: Methodology phases .. 12

Figure 4: Test category levels ... 12

Figure 5: Code review execution order .. 14

Figure 6: Code review planning ... 20

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: Apache Core & APR Code Review Results

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 7 of 36

Acronyms and Abbreviations

API Application Programming Interface

APR Apache Portable Runtime

DG Directorate General

EC European Commission

FOSS Free and Open Source Software

FOSSA Free and open Source Software Auditing

GUI Graphic User Interface

IDE Integrated Development Environment

WP Work Package

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: Apache Core & APR Code Review Results

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 8 of 36

1 INTRODUCTION

1.1. Context

The security of the applications used nowadays has become a major concern for organisations,

companies and citizens in general. Applications are becoming a more common part of our daily

lives, and are being used for business and leisure purposes alike. The information managed by

these applications has become the most essential asset to protect, as it includes personal

information, internal data, industrial property, etc.

From a security point of view, this new scenario presents many new challenges that need to be

addressed in order to protect the integrity and confidentiality of the data managed by the

applications and their users.

Furthermore, the exposure of the applications to the Internet has turned them into a prime target,

due to the value that this private and internal information has.

One of the advantages of Free and Open-Source Software (FOSS) is that its source code is

readily available for review by anyone, and therefore it virtually enables any user to check and

provide new features and fixes, including security ones. Also, from a more professional point of

view, it allows organisations to review the code completely and to find the weaknesses that it

presents, allowing for a refinement of their security and ending up in a safer experience for all the

users of the applications.

1.2. Objective

The objective of this document is to provide the results of the code review of Apache Core &

APR software. This review was carried out within the EU-FOSSA (Free and Open-Source

Software Auditing) project, focusing on the security aspects of the software.

The objective of this code review is to examine the Apache Core & APR software, focusing

mainly on its security aspects, the risk that they pose to its users and the integrity and

confidentiality of the data contained within.

Apache HTTP Server is one the most used HTTP and proxy servers and it is a FOSS. It is a

mature FOSS project running since 1995 and many security flaws have been detected and

corrected since its conception.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: Apache Core & APR Code Review Results

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 9 of 36

1.3. Scope

The scope of the project is as follows:

Application name Apache Core & APR Review start 25/07/2016

Code review owner
European Commission - Directorate-General for
Informatics (DIGIT)

Review end 22/08/2016

Objective Security Code Review

Num. Lines 61 286 Version
Apache 2.4.23

APR 1.5.2
Programming language C

Code Review Mode  1-Managed  2-Defined  3-Optimised

Libraries

 Apache Core (version 2.4.23)

 Apache Portable Runtime (APR, version v1.5.2)

Extensions/plugins N/A

Services required N/A

Result visibility  Internal  Restricted  Public

Critical notification During assessment Apache Security Group

Categories

Data/Input
Management


Error Handling /
Information Leakage

 Specific C controls 

Authentication
Controls


Software
Communications


Specific C++
controls

X

Session
Management

 Logging/Auditing 
Specific JAVA
controls

X

Authorisation
Management

 Secure Code Design 
Specific PHP
controls

X

Cryptography 
Optimised Mode
Controls



Comments

The code review of the Apache Server includes:

1. Apache Core module

2. APR library

1.4. Deliverables

1 WP2 - Deliverable 11: Design of the methods for performing the code reviews List of methods for

communicating the results of code reviews

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: Apache Core & APR Code Review Results

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 10 of 36

2 EXECUTIVE SUMMARY

The results obtained from the controls evaluated during this code review provided a number of

relevant findings regarding potential weaknesses of the application reviewed. A general overview

of the results is depicted in Error! Reference source not found., which shows a summary of the

code review, listing the findings, their severity and the categories affected by them. As it can be

observed, the number of findings within each category is small compared to the total number of

controls reviewed, thus resulting in the graph shown on the bottom right section of the figure.

Figure 1: General overview

The Apache HTTP Server is composed of multiple components and relies heavily on the use of

extensions and modules to include additional features (e.g. secure communications, encryption,

proxy functionality, etc.). This code review, as it is a pilot included of the EU-FOSSA project, has

focused primarily on the core sections of Apache, excluding at the moment any external module

or extension.

The modules selected are the Apache HTTP Core and the Apache Portable Runtime (APR),

which comprises a total of 61 286 lines of code reviewed, approximately 20% of the total lines

from the Apache HTTP Server and common modules. The Lines of Code (LoC) were grouped

into 34 sets (or ‘batches’) of code in order to optimise the process, allowing a distributed process

among the EU-FOSSA project code review teams.

Furthermore, during the grouping process, only code pertaining to Windows and UNIX host

systems was considered (other operating systems were discarded for this pilot, which are

candidates to review if the complete Apache server code is reviewed in the future). These

operating systems are the ones mostly used in production environments, and therefore are critical

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: Apache Core & APR Code Review Results

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 11 of 36

from a security point of view. If any part of this code is not secure, it could provide a potential

entry point for an attacker in order to gain access to the machine/server. On the other hand, it is

necessary to take into account the fact that the Apache HTTP Server is a world-wide used and

highly regarded software which is continuously being tested and evaluated, mostly the front-end

section (external access) via audits and pentesting analysis. However, the backbone core code is

not tested as often, and being the part that interacts with the operating system it is of

considerable interest to evaluate its current security standing.

Moving on to the code review, and in relation to the control categories, it is noteworthy the fact

that several findings were discovered on the code, all of them within the Secure Code Design

and Specific C controls categories.

A total of 7 controls, from the 160 controls reviewed, had at least one finding detected in them,

which can be considered a low percentage overall. The remaining categories passed successfully

with no relevant findings.

A summary of the findings is depicted in Figure 2, comparing the failed controls found and

indicating their distribution within the different risk levels.

Figure 2: Risk Level

After a detailed and careful evaluation of these findings, it was concluded that none of them were

critical; in fact nor were them of high or medium risk level. The findings were determined to be:

2 low-risks and 5 of an informative nature. Furthermore, 4 of these affect libraries used

exclusively during the compilation support libraries, and should be considered, although the risk

they pose is not direct. Overall the results were:

 Critical findings

No critical weaknesses were found in this code review.

 High risk findings

No high risk weaknesses were found in this code review.

 Medium risk findings

No medium risk weaknesses were found in this code review.

Therefore the findings were classified as either low or informative, and while they are still relevant

and should be eventually fixed, their impact does not justify a short-term or emergency fix

process.

0 0 0
2

5

0

5

10

Critical High Medium Low Info

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: Apache Core & APR Code Review Results

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 12 of 36

3 METHODOLOGY

The methodology followed to carry out the code review is summarised in Figure 3. This

methodology covers from the initial planning phase to an optional post-audit support phase.

Furthermore, each of these phases is divided into several major tasks.

Figure 3: Methodology phases

Preparation Managed Mode Technical Report Report

Test Design

 Defined Mode

Impact Analysis
 Report

Dissemination

Environment
Configuration

Optimised Mode

 Finding
Prioritisation

Post-audit

During the execution phase, a set of controls is checked by the code reviewers in order to

properly verify the security and stability of the code. These controls and checks are grouped in a

checklist presented in Section 4.3. Overview of Results, to facilitate the reading of the findings.

Figure 4: Test category levels

As seen in Figure 4, there are two main groups of controls: the common ones (applicable

regardless of the language of the code) and language-specific controls (for C, C++, JAVA or

PHP). A combination of both should be used in any code review to ensure the most accurate

results (explained in WP2 - Deliverable 11: Design of the methods for performing the code

reviews).

Planning Execution Assessment Reporting

Methodology test categories

Category
1

Category
2

Common checklist

Check 1

Check 2

Language-specific checklist

Check 1 Check 2

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: Apache Core & APR Code Review Results

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 13 of 36

3.1. Planning

The first phase of the methodology covers the information gathering activities needed in order to

properly plan and carry out the code review. This includes the compilation of basic information

about the code to be reviewed, an analysis of the applicable test cases and the preparation of the

testing environment if any specific requirements are demanded by the particularities of the code.

This information was obtained from the stakeholders requesting the code review and from the

developers or IT maintainers where applicable. Once this phase is finished, all needs should have

been met in order to start the test cases.

To further organise this phase, three main activities have been defined:

 Preparation: this activity comprises all the interviews, meetings and information

gathering activities needed to properly define the scope, objectives and needs of the

code to be reviewed.

 Test Design: once the scope, objectives and custom needs of the code have been

identified, the next logical step is to establish the test cases that are going to be

considered in order to achieve the objectives that have been set. This is reflected in the

checklist, indicating those cases that are not applicable.

 Environment Preparation: before starting the next phase, it is necessary to ensure that

the testing environment is prepared to carry out the tests selected during the previous

activity. This includes the installation and configuration of the tools.

3.2. Execution

The next phase covers the execution of the test cases selected for the code review in the

previous phase, taking into consideration the scope, objectives and constraints set.

The execution process was divided into three sequential phases, each providing data as input for

the next one, as depicted in Figure 5. All of them were carried out by the code review team, using

both automated and manual tools.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: Apache Core & APR Code Review Results

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 14 of 36

Figure 5: Code review execution order

To further organise this phase, three main activities have been defined:

 Managed mode: this activity covers the execution of the automated tools selected for the

analysis of the code. The following categories were analysed:

o Data/Input Management (DIM): The data entry points of an application, service or

library are one of the weak points that must be controlled against unexpected values.

The subcategories covered are as follows:

 File Input / Output Management (FIM)

 Data stream management (DSM)

 Character encoding management (CEM)

 Input validation and sanitisation (IVS)

 Sensitive Data Management (SDM)

 Entry point validation (EPV)

 XML schema validation (XSV)

o Authentication Controls (AUT): It covers any aspect related to the process during which

the solution reviews and verifies the identity of another entity, such as a user. The

subcategories covered are as follows:

 Authentication verification (AUV)

 Password policy usage (PPU)

 Credential storage security (CST)

 User account protection (UAP)

 Password recovery process (PRP)

o Session Management (SMG): It covers all parts of the protection and management of

user sessions once they are authenticated against the solution. The subcategories

covered are as follows:

 Session creation (SCP)

 Session ID management (SID)

 Session lifecycle (SLC)

 Session logout (LGP)

Managed mode

Tests using
automated tools

Defined mode

Manual tests to
verify and expand
the results

Optimised mode

Manual tests to
evaluate specific
scenarios

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: Apache Core & APR Code Review Results

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 15 of 36

o Authorisation Management (ATS): This process is designed to ensure that when a user

or entity correctly authenticates against the application, s/he gets the proper privileges

assigned to it. The subcategories covered are as follows:

 Access control system (ACS)

 Privilege revision (PRV)

o Cryptography (CPT): Covers all aspects related to the protection via encryption of the

information and data in transit and at rest. The subcategories covered are as follows:

 Credential protection at rest (CPR)

 Cryptographic configuration (CRC)

o Error Handling/Information Leakage (EHI): The information provided by the application

errors, page metadata and sample content must be filtered to avoid a leakage of

sensitive information. The subcategories covered are as follows:

 Information leakage (INL)

 Sample files (SFL)

 Error handling (EHD)

o Software communications (COM): it comprises those functions that manage and control

network connections, including sockets and protocol functions. The subcategories

covered are as follows:

 HTTP Secure Management (HSM)

o Logging/Auditing (LOG): The logs generated by an application are a superb source of

information about its contents, workings and potential weaknesses. The subcategories

covered are as follows:

 Log configuration management (CFG)

 Log generation (GEN)

 Log sensitive information (LSI)

o Secure Code Design: There are several aspects related to the application itself and the

technologies and frameworks used for its implementation. The subcategories are as

follows:

 Framework requirements (FWK)

 Variable types / operations (VTY)

 Expressions/Methods (EXM)

 Defined Mode: once the managed mode activity is finished, the code review team will have a

set of results generated from the automated tools. These results, together with the manual

tests needed, are checked in order to fill the controls and checks that will provide the final

results.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: Apache Core & APR Code Review Results

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 16 of 36

 Optimised Mode: the final part of the execution phase focuses on those sections of the

application that are found to be most at risk, alongside several more specific tests that require

further evaluation. They are divided into the following subcategories:

 Concurrency (CCR)

 Denial of Service (DOS)

 Memory and resource management (MRM)

 Code Structure (COS)

 Role-privilege matrix (RPM)

The optimised mode covers the set of language-specific (C, C++, JAVA and PHP) controls,

and other controls related to the code unique particularities. The language specific controls

for C (CBC) are divided into the following subcategories:

o Pre-Processor (PRE)

o Variable Management (VMG)

o Memory Management (MEM)

o File I/O Management (FIO)

o Environment (ENV)

o Signal and Error Handling (SEH)

o Concurrency (CON)

o Miscellaneous (MSC)

3.3. Assessment

This phase covers the analysis and evaluation of the findings identified in the previous phase,

with the objective of validating and assessing their real risk, considering their Threat, Vulnerability

and Impact risk scores. Once these scores have been calculated, a prioritisation process is

carried out to identify those findings that should be fixed in a timely manner. Finally, if the

vulnerability is unknown and has not been reported before, the project owners might consider

reporting it in a CVE, CWE, CVSS or similar system.

To further organise this phase, three main activities have been defined:

 Technical Report Analysis: review of the results from the previous phase, validating the

findings and removing any incomplete, incorrect or false-positive results. As part of this

task, the findings are classified based on their category.

 Impact Analysis: Once the findings have been properly validated and classified, the

next step is to determine their Threat, Vulnerability and Impact risk scores:

o Threat factors: skill required opportunity and dimension.

o Vulnerability factors: ease of discovery, ease of exploitation and awareness.

o Impact factors: confidentiality, integrity and availability.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: Apache Core & APR Code Review Results

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 17 of 36

From the average result of these factors considered for the score, one of the following

scores is given to the Threat, Vulnerability and Impact risks, based on the numeric result:

0 to 3: Low 3 to 6: Medium 6 to 9: High

Finally, the checklist is completed by adding the global risk posed by the controls, which

is calculated from the individual results (Threat, Vulnerability and Impact). Table 1 shows

how to calculate the global risk taking into consideration the Impact and the Probability

(Average value of both Threat and Vulnerability results).

Table 1: Global risk evaluation

Impact

High Medium High Critical

Medium Low Medium High

Low Info Low Medium

 Low Medium High

 Probability (Avg. Threat & Vulnerability)

The possible values are Critical, High, Medium, Low or Info. If a control fails, it is

marked with an X (it is a finding); if it passes, it is marked with a ; and if the control is

not applicable, it is marked with N/A.

 Finding Prioritisation: The prioritisation of the findings is based on their

criticality, and the results are communicated as established in the initial phases of

the project.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: Apache Core & APR Code Review Results

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 18 of 36

4 CODE REVIEW DETAILS

4.1. Initial Considerations

The application to review contained several particularities that needed to be identified in order to

ensure the proper analysis of the code. This included characteristics such as frameworks or

libraries implemented, and the different aspects of the modules in use.

The main focus of this code review is on the Apache Core Module. However, during the initial

preparations it was found that it depends heavily on the Apache Portable Runtime (APR) library.

Therefore, APR was considered of high relevance to include it in the analysis.

The code to review was divided in the following ‘modules’: (1) Apache Core and (2) APR. Each of

them was in turn divided into smaller code sets (defined as ‘batches’). This helped to carry out the

code review in parallel using the code review procedure explained in the WP2 - Deliverable 11:

Design of the methods for performing the code reviews.

The distribution of software files and batches can be found in the following excel file:

Batches_and_files.xlsx

Apache Core (modules/core)

Batch Files Lines

Mod_macro 1 956

Mod_so 2 479

Mod_watchog 2 934

Apache Portable Runtime (APR)

Batch Files Lines Batch Files Lines

APR_misc (omitted) 4 493 APR_file_io_unix 16 3.525

APR_dso (omitted) 5 1.190 APR_file_io_win32 11 4.822

APR_atomic (omitted) 2 212 APR_threadproc_unix 5 1.765

APR_network_io (omitted) 11 1.078 APR_threadproc_win32 4 1.599

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: Apache Core & APR Code Review Results

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 19 of 36

Batch Files Lines Batch Files Lines

APR_locks (omitted) 12 1.701 APR_network_io_unix 8 4.044

APR_time (omitted) 0 0 APR_network_io_win32 3 1.297

APR_tools 1 115 APR_dso_unix_win32 2 418

APR_memory 1 2.655 APR_misc_unix 8 1.518

APR_shmem (omitted) 2 344 APR_misc_win32 8 1.256

APR_file_io (omitted) 25 2.860 APR_atomic_unix_win32 7 967

APR_threadproc (omitted) 14 3.019 APR_time_unix 2 502

APR_build 2 2.806 APR_time_win32 2 553

APR_user (omitted) 2 111 APR_locks_unix 5 1.643

APR_passwd 1 256 APR_locks_win32 4 697

APR_tables 3 2.569 APR_shmem_unix_win32 2 1.140

APR_include (omitted) 30 1.638 APR_user_unix 2 233

APR_mmap 3 376 APR_user_win32 2 380

APR_support 1 123 APR_poll_unix 8 3.777

APR_encoding 1 1.183 APR_include_common 38 11.927

APR_poll (omitted) 2 335 APR_include_unix 15 1.219

APR_random 4 962 APR_include_win32 14 1.715

APR_strings 6 2.875

In order to better focus the efforts on the code review, only code related to the most used operating

systems (‘Win32’ and ‘UNIX’) has been analysed, leaving other code parts related to ‘NetWare’ and

‘OS/2’ out of the scope in this particular case. Also, any code use for testing or debugging purposes has

also been omitted.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: Apache Core & APR Code Review Results

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 20 of 36

4.2. Planning

The code review performed followed the planning defined at the beginning of the project, which

takes into consideration the tests selected and the size/complexity of the application to review.

The final planning is detailed in Figure 6, including the dates and time required for each step.

Figure 6: Code review planning

4.3. Overview of Results

The controls used in the code review were generated as part of the EU-FOSSA project, and

taking as a main source the information provided by two authorities regarding software security.

These are the following:

 Application Security Verification Standard from OWASP.

 Secure coding standards from the Carnegie Mellon Software Engineering Institute (SEI).

As the full control set designed as part of the EU-FOSSA project covers a wide range of aspects

and functionalities, it is important to be aware that not all of them will apply to every code review.

Therefore, the controls to include as part of this code review will depend on the features and

characteristics of the code to review (as an example, authentication controls do not apply to a

code that does not contain such functionality).

Each control has a unique identifier, following this template:

[CAT]-[SUB]-[###]

Legend:

[CAT]  Control category.

[SUB]  Control subcategory.

[###]  Control number.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: Apache Core & APR Code Review Results

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 21 of 36

4.3.1. General Findings

Table 2 shows a summary of all the general controls available on the code review methodology. It

includes a result column indicating which of these controls are applicable, if they were successful or if

they failed, including their severity.

Important: the results indicate the controls affected, not the number of findings in each one of them.

Therefore, if a control has multiple findings in them, it will appear only once in this table. Further details

of these controls, including the individual findings in each one, can be found in Section 4.4.

Table 2: Checklist general controls

ID Control Result

DIM-FIM-001 Deletion of temporary files 

DIM-FIM-002 File permissions at creation 

DIM-FIM-003 Ensure that all files are closed after use 

DIM-FIM-004 Usage of canonical path of files 

DIM-FIM-005 Always check EOF on streams I/O operations 

DIM-FIM-006 Updated file management 

DIM-DSM-001 All data streams have to be closed after use 

DIM-DSM-002 Get all valid data contained in a data stream 

DIM-CEM-001 Correct format exchange of binary to string data N/A

DIM-CEM-002 Normalise all string inputs N/A

DIM-IVS-001 Data input validation 

DIM-IVS-002 Data output validation 

DIM-XSV-001 Review the XML schema, or DTD, used and its structure N/A

DIM-XSV-002 Data is sanitised before constructing and sending it in XML format N/A

AUT-AUV-001 The application uses a robust authentication verification process 

AUT-PPU-001 The application makes use of a complex password policy N/A

AUT-PPU-002 Password history is maintained N/A

AUT-PPU-003 Passwords must expire after a set amount of time N/A

AUT-CST-001 Protection of the password at rest N/A

AUT-UAP-001 Number of login attempts is limited N/A

AUT-UAP-002 Connections from uncommon locations are restricted 

AUT-PRP-001 A password recovery process is defined N/A

AUT-PRP-002 Password recovery process requires additional validation steps N/A

AUT-PRP-003 User is warned of any password recovery attempts N/A

SMG-SCP-001 Review controls in place to assign user privileges 

SMG-SCP-002 Server keeps a list of all active identifiers and their data 

SMG-SCP-003 Session cookies are protected and do not have sensitive data N/A

SMG-SID-001 A unique ID is assigned to each individual user session N/A

SMG-SID-002 Control active sessions at any time N/A

SMG-SLC-001 Session timeouts are implemented N/A

SMG-SLC-002 Privilege management 

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: Apache Core & APR Code Review Results

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 22 of 36

ID Control Result

SMG-LGP-001 ID, assignations, privileges and resources are discarded on logout 

SMG-LGP-002 Logout functionality should terminate the session and connection 

ATZ-ACS-001 Use only trusted system objects for access authorisation decisions N/A

ATZ-ACS-002 Authorisation rules and process N/A

ATZ-PRV-001 Privileges and roles 

ATZ-PRV-002 Privilege modification N/A

CPT-CPR-001 Sensitive information is stored securely using encryption 

CPT-CPR-002 Information stored is hashed to preserve its integrity 

CPT-CRC-001 Review cryptographic configuration parameters 

CPT-CRC-002 Management cryptographic keys N/A

EHI-INL-001 Metadata leakage on any files accessible by the users 

EHI-INL-002 Comments accessible in any client-side code files N/A

EHI-INL-003 Internal routes and paths must not be shown as default routes N/A

EHI-SFL-001 Sample files must be removed or filtered by the server N/A

EHI-EHD-001 Application errors must be controlled in the GUI 

EHI-EHD-002 Try-catch-finally block N/A

EHI-EHD-003 Correct Exception and Error Management 

EHI-EHD-004 Object is restored to a previous state after an error or failure N/A

EHI-EHD-005 Third-party services and libraries errors are controlled locally 

COM-HSM-001 Avoid HTTP Response Splitting N/A

COM-HSM-002 Prevent Directory Traversal 

COM-HSM-003 HTTP Strict Transport Security N/A

COM-HSM-004 Avoidance of redirects and forwards in webpages N/A

LOG-CFG-001 Logs are properly configured 

LOG-CFG-002 Logs register only the information needed for their purpose 

LOG-CFG-003 Debug Logging 

LOG-CFG-004 Logging exceptions N/A

LOG-GEN-001 Log generation must continue after a log system exception N/A

LOG-LSI-001 Logs must not contain sensitive information, or else use hashes 

LOG-LSI-002 User passwords and tokens must be omitted from logs 

SCD-FWK-001 All frameworks and third party components are up-to-date X Info

SCD-VTY-001 Review operation on numeric values and bit collections 

SCD-VTY-002 On division operations, check that the divisor does not equal zero 

SCD-VTY-003 Direct comparisons with NaN must not be carried out 

SCD-VTY-004 Do not use floating-point variables as loop counters 

SCD-EXM-001 Function return values are parsed and evaluated 

SCD-EXM-002 Method arguments must fall within the established bounds 

OPT-CCR-001 Ensure that instance locks are controlled 

OPT-CCR-002 Do not use unsafe operations, expressions or methods in Threads 

OPT-CCR-003 Thread pools must be controlled 

OPT-DOS-001 Check DoS vulnerabilities on the application N/A

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: Apache Core & APR Code Review Results

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 23 of 36

ID Control Result

OPT-MRM-001 Review the memory management process 

OPT-MRM-002 Review resource management process N/A

OPT-COS-001 Evaluate processes that call back to the code multiple times N/A

OPT-COS-002 There is a clear separation between the application layers N/A

OPT-RPM-001 Analyse role-privilege matrix used on the application N/A

4.3.2. Language-Specific Findings

Table 3 contains a summary of all the language-specific controls available on the methodology for the C

programming language (controls are also available for JAVA, PHP and C++ but have been omitted as

none of them apply in this case). As in the previous table, only control results are listed, and not each

individual finding within them. Detailed results are, as well, available in Section 4.4.

Table 3: Check-list language-specific controls

ID Control Result

CBC-PRE-001 Do not create a universal character name through concatenation 

CBC-PRE-002 Avoid side effects in arguments to unsafe macros 

CBC-PRE-003 Do not use pre-processor directives in invocations of function like macros 

CBC-VMG-001 Declare objects with appropriate storage durations 

CBC-VMG-002 Declare identifiers before using them 

CBC-VMG-003 Do not declare and identifier with conflicting linkage 

CBC-VMG-004 Do not declare or define a reserved identifier X Info

CBC-VMG-005 Use the correct syntax when declaring a flexible array member 

CBC-VMG-006 Do not create incompatible declarations of the same function or object 

CBC-VMG-007
Do not declare variables inside a switch statement before the first case
label



CBC-VMG-008 Ensure that floating-point conversions are within range of new type 

CBC-VMG-009 Preserve precision when converting integral values to floating-point type N/A

CBC-VMG-010 Do not use object representations to compare floating-point values 

CBC-VMG-011 Do not form or use out-of-bounds pointers or array subscripts X Info

CBC-VMG-012 Ensure size arguments for variable length arrays are in a valid range 

CBC-VMG-013 Do not subtract or compare two pointers that do not refer to the same array 

CBC-VMG-014 Do not add or subtract an integer to a pointer to a non-array object 

CBC-VMG-015 Guarantee that library functions do not form invalid pointers 

CBC-VMG-016 Do not add or subtract a scaled integer to a pointer 

CBC-VMG-017 Do not attempt to modify string literals 

CBC-VMG-018
Guarantee that string storage has sufficient space for character data and
the null terminator



CBC-VMG-019
Do not pass a non-null-terminated character sequence to a library function
that expects a string



CBC-VMG-020 Cast characters to unsigned char before converting to larger N/A

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: Apache Core & APR Code Review Results

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 24 of 36

ID Control Result

CBC-VMG-021 Do not confuse narrow and wide character strings and functions 

CBC-VMG-022 Do not read uninitialized memory N/A

CBC-VMG-023 Do not dereference null pointers 

CBC-VMG-024 Do not dereference null pointers 

CBC-VMG-025 Variables must not be accessed using an incompatible type pointer 

CBC-VMG-026 Prevent undefined behaviour when restrict-qualified pointers are used N/A

CBC-VMG-027 Do not apply operands within the sizeof, _Alignof or _Generic functions 

CBC-VMG-028 Ensure that unsigned and signed integer operations are managed correctly 

CBC-MEM-001 Do not access freed memory X Low

CBC-MEM-002 Free dynamically allocated memory when no longer needed 

CBC-MEM-003
Allocate and copy structures containing a flexible array member
dynamically



CBC-MEM-004 Only memory allocated dynamically should be freed 

CBC-MEM-005 Allocate sufficient memory for an object X Info

CBC-MEM-006 Do not modify the alignment of objects by calling realloc() N/A

CBC-FIO-001 Exclude user input from format strings X Low

CBC-FIO-002 Do not perform operations on devices that are only appropriate for files N/A

CBC-FIO-003
Do not assume that fgets() or fgetws() returns a nonempty string when
successful

N/A

CBC-FIO-004 Do not copy a FILE object N/A

CBC-FIO-005
Do not alternately input and output from a stream without an intervening
flush or positioning call

N/A

CBC-FIO-006 Reset strings or fgets() or fgetws() failure N/A

CBC-FIO-007
Do not call getc(), putc(), getwc(), or putwc() with a stream argument that
has side effects

N/A

CBC-FIO-008 Only use values for fsetpos() that are returned from fgetpos() N/A

CBC-FIO-009 Avoid TOCTOU race conditions while accessing files 

CBC-FIO-010 Do not access a closed file 

CBC-ENV-001 Do not modify the object referenced by the return value of certain functions 

CBC-ENV-002
Do not rely on an environment pointer following an operation that may
invalidate it



CBC-ENV-003 All exit handlers must return normally 

CBC-ENV-004 Do not call system() 

CBC-ENV-005 Do not store pointers returned by certain functions 

CBC-ENV-006 Ensure proper usage of the readlink() function N/A

CBC-ENV-007
Do not call putenv() with a pointer to an automatic variable as the
argument



CBC-ENV-008 Proper privilege revocation and relinquish process must be defined 

CBC-SEH-001 Call only asynchronous-safe functions within signal handlers N/A

CBC-SEH-002 Do not access shared objects in signal handlers 

CBC-SEH-003 Do not call signal() from within interruptible signal handlers 

CBC-SEH-004 Do not return from a computational exception signal handler N/A

CBC-SEH-005
Set errno to zero before calling a library function known to set errno, and
check errno only after the functions returns a value indicating failure



DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: Apache Core & APR Code Review Results

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 25 of 36

ID Control Result

CBC-SEH-006 Do not rely on indeterminate values of errno N/A

CBC-SEH-007 Detect and handle standard library errors X Info

CBC-SEH-008 Detect errors when converting a string to a number 

CBC-CON-001 Clean up thread-specific storage 

CBC-CON-002 Do not destroy a mutex while it is locked 

CBC-CON-003 Prevent data races when accessing bit-fields from multiple threads 

CBC-CON-004 Avoid race conditions when using library functions and files 

CBC-CON-005
Declare objects shared between threads with appropriate storage
durations

N/A

CBC-CON-006 Avoid deadlock by locking in a predefined order 

CBC-CON-007 Wrap functions that can spuriously wake up in a loop N/A

CBC-CON-008 Do not call signal() in a multithreaded program 

CBC-CON-009 Do not join or detach a thread that was previously joined or detached N/A

CBC-CON-010 Do not refer to an atomic variable twice in an expressions 

CBC-CON-011 Wrap functions that can fail within a loop N/A

CBC-CON-012 Do not use the vfork() function 

CBC-CON-013 Do not use signals to terminate threads N/A

CBC-MSC-001 Do not use the rand() function for generating pseudorandom numbers 

CBC-MSC-002 Properly seed pseudorandom number generators 

CBC-MSC-003 Do not pass invalid data to asctime() function N/A

CBC-MSC-004 Ensure that control never reaches the end of a non-void function 

CBC-MSC-005
Do not treat a predefined identifier as an object if it might only be
implemented as a macro

N/A

CBC-MSC-006 Do not call va_arg() on a va_list that has an indeterminate value N/A

CBC-MSC-007 Do not violate constraints N/A

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: Apache Core & APR Code Review Results

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 26 of 36

4.4. Detailed Results

This section contains a detailed view of each control reviewed that has at least one finding in them.

It provides a detailed explanation of the control, the checks that were carried out and the results

and evidences backing up the finding. Furthermore, these controls have been assessed

considering three scores: Threat, Vulnerability and Impact.

The term ‘Vulnerability’ is used in the context of this study as a ‘Weakness’, it is not necessarily a

security vulnerability that can be exploited. Threat, Vulnerability and Impact indicators are used to

assess the global risk, as explained on sub-section 3.3 Assessment.

There were findings in 7 controls. These controls are:

 Secure Code Design

 Framework Requirement: SCD-FWK-001 (info)

 Specific C Controls

 Variable Management: CBC-VMG-004 (info), CBC-VMG-011 (info)

 Memory Management: CBC-MEM-001 (low), CBC-MEM-005 (info)

 File I/O Management: CBC-FIO-001 (low)

 Signal and Error Handling: CBC-SHE-007 (info)

These controls, and their findings, are described in detail in the following sub-sections.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: Apache Core & APR Code Review Results

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 27 of 36

4.4.1. Specific C Controls

4.4.1.1. Variable Management

Table 4: CBC-VMG-004 findings

CBC-VMG-004 Do not declare or define a reserved identifier Info

Description

All identifiers have to avoid variable declarations with

the same value as reserved values, such as with an

uppercase letter.

Threat Low

Vulnerability Low

Impact Low

Checks

1
Check the name of file scope objects declared in the class does

not begin with underscore.


2 Avoid the use of underscore in declaration of header guards. 

3
Avoid declarations which contains name that begin with ‘INT’ or

ends ‘_MAX’, in order to prevent conflicts with reserved macros.
X

4

Check that any C standard functions which are included in header

definition such as ‘malloc’, ‘realloc’, ‘aligned_alloc’, ‘calloc’, are

not redefined in the class.



5

If the program declares an identifier ‘errno’, it is mandatory to

change it. This identifier has to be in the header <errno.h>.

Include this sentence #include <errno.h> in the code.



Results

The usage of the _MAX suffix in names of variables can lead to a conflict
with reserved macros.

The usage of this suffix varies from one OS to another, so additional controls
to ensure proper transition of the fix for this finding may be needed.

Evidence

%APR%\shmem\unix\shm.c (line 32)

NAME_MAX

Recommendation /

Specific Solution

Ensure that there are no common variables defined making uses of the

_MAX suffix, and replace any uses identified. If needed, add controls to

ensure that the change does not impact in the code functions that make use

of that variable/s.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: Apache Core & APR Code Review Results

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 28 of 36

4.4.1.2. Memory Management

The findings identified within this control are not considered vulnerabilities, as they affect legacy systems

not officially supported by Microsoft nor the Apache HTTP project.

Table 5: CBC-MEM-001 findings

CBC-MEM-001 Do not access freed memory Low

Description

Using a pointer that directs to memory that has

been already freed (and therefore can be used by

another process), can lead to unexpected

behaviour an instability.

Threat Low

Vulnerability Medium

Impact Low

Checks

1 Verify that pointers are destroyed when memory is freed. 

2 Ensure that memory has been freed before writing data on it. X

3 Verify that the memory-freeing process is done only once. 

Results

Legacy Finding: the following finding is mentioned to create awareness

among users that keep running Apache servers on older OS (Windows XP,

Windows Server 2003…), but it does not have to be fixed as those systems

are not supported (by neither Microsoft nor httpd).

 It does not impact on the Control assessment results.

 InitializeCriticalSection: Exceptions can be thrown in low-memory

situations. Use InitializeCriticalSectionAndSpinCount instead.

Evidence

LEGACY FINDINGS (for reference only)

%APR%\threadproc\win32\proc.c (line 430)

InitializeCriticalSection(&proc_lock);

%APR%\misc\win32\misc.c (line 223)

(InitializeCriticalSection)(&cs);

%APR%\locks\win32\thread_cond.c (line 52)

InitializeCriticalSection(&cv->csection);

%APR%\locks\win32\thread_mutex.c (line 64)

InitializeCriticalSection(&(*mutex)->section);

Recommendation /

Specific Solution

These findings only affect implementations of the Apache Server in older

operating systems. However, these operating systems are no longer

supported by Apache or Microsoft. Furthermore, adding fixes to these legacy

findings would introduce complexity to the code and, as it is no longer

supported, it is discouraged.

Specific Solution: Although it is discouraged to use Apache in older operating

systems, and taking into consideration that this should not be fixed by the

Apache Foundation, the following information is provided for any older user of

legacy OS:

o Replace InitializeCriticalSection with

InitializeCriticalSectionAndSpinCount.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: Apache Core & APR Code Review Results

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 29 of 36

4.4.1.3. File I/O Management

Table 6: CBC-FIO-001 findings

CBC-FIO-001 Exclude user input from format strings Low

Description
Never call a formatted I/O function with a format

string containing a non-sanitised value.

Threat Low

Vulnerability Medium

Impact Low

Checks 1

Ensure that user input values are not used in a formatted I/O

functions, such as 'snprintf()'+'fprintf()' or 'snprintf()'+'syslog()'.

Non-sanitised input will not be concatenated in a string that will be

used in file operations.

X

Results

sprintf: Does not check for buffer overflows (CWE-120). Use sprintf_s, snprintf,

or vsnprintf.

Evidence

%APR%\misc\win32\misc.c (line 228)

(sprintf)(sbuf, "%p %08x %08x %s() %s:%d\n",

ha, (unsigned int)seq, (unsigned int)GetCurrentThreadId(),

fn, fl, ln);

Recommendation /

Specific Solution

The use of weak vulnerable functions should be avoided whenever possible as

to increase the robustness of the code and prevent related risks as well.

Specific Solution: For the case of sprint, it should not be used but replaced

with sprintf_s, snprintf, or vsnprintf.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: Apache Core & APR Code Review Results

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 30 of 36

4.4.2. Build Tool (build folder)

These findings are related to the compilation support libraries that are part of the APR library but

take no part on the final executable code generated. The purpose of this library is to assist

compilation, therefore the findings are not directly related to the running APR, but to the

compilation process. They are included here to serve as a reference for future upgrades and

development on them.

Important: these findings do not have a direct impact on the security of the runtime code or on

the execution of the server, as they are part of a separate block (build tool) used exclusively

during compilation time.

Before deciding to change them, one must take into account the risk of adding more complexity to

the code.

4.4.2.1. Variable Management

Table 7: CBC-VMG-011 findings

CBC-VMG-011 Do not form or use out-of-bounds pointers or array subscripts Info

Description

The addition or subtraction of a pointer into/from, or

just beyond, an array object and an integer type

produces a result that does not point into, or just

beyond the same array object.

Threat Low

Vulnerability Low

Impact Low

Checks

1 Ensure that there are no negative index values. X

2 Use an unsigned type of index to avoid negative index values. X

3
Use L’ \0’ to terminate a loop with any array to prevent buffer

overflow.


4

Initialising matrix elements in the same row-major as

multidimensional objects (go through the matrix first by rows and

then by columns).

N/A

5 Avoid incrementing the pointers to a loop condition. 

6

Validate the index by using relational operators to prevent

overflows. It is mandatory to #define a SIZE_MAX and to make

sure, in each iteration, that the loop does not overflow.



Results

Arrays: Several times specific positions of arrays are accessed without

checking if the position exists. Possible negative positions, or larger ones than

the array limit can be accessed freely.

For instance, in the first evidence, the argument ‘position’, in line 353, is

declared as int, instead of unsigned int. The value of the ‘position’ variable is

not checked, in other words, there is no control inside the function to ensure

that the value received by the ‘position’ argument is a positive value,

something worthy due to the int declaration.

If there is a large negative value as the value received by the ‘position’

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: Apache Core & APR Code Review Results

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 31 of 36

argument, many memory positions could be compromised.

The lack of control over an int variable which will be used as some kind of

‘pointer’ makes this a finding.

Evidence

%APR%\build\jlibtool.c (line 353)

void insert_count_chars(count_chars *cc, const char *newval, int position)

{

int i;

for (i = cc->num; i > position; i--) {

cc->vals[i] = cc->vals[i-1];

}

cc->vals[position] = newval;

cc->num++;

}

%APR%\build\jlibtool.c (line 341)

cc->vals[cc->num++] = newval;

%APR%\build\jlibtool.c (line 531)

var[equal_pos - arg] = 0;

Recommendation /

Specific Solution

This finding does not have a direct impact on the security of the runtime code,

as it is part of a separate block (build tool) used exclusively during compilation

time.

Before deciding to change it, one must take into account the risk of adding

more complexity to the code.

Recommendation:

Implement control functionality to check the value of the loop limit variable in

order to ensure that it is a valid positive number and larger than zero.

Any access to arrays (especially within structures) should be done after

checking the bounds of that array.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: Apache Core & APR Code Review Results

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 32 of 36

4.4.2.2. Memory Management

Table 8: CBC-MEM-005 findings

CBC-MEM-005 Allocate sufficient memory for an object Info

Description

It is necessary to guarantee that storage for strings

has sufficient space available for character data and

consequently allocate sufficient memory for an object.

Threat Low

Vulnerability Low

Impact Low

Checks

1 The length of string storage arrays must not equal zero. 

2
Validate string operations to ensure that they are controlled and cannot

result in an overflow.
X

3
Arguments passed to functions must match the expected format and

size.


Results

Strcpy, strcat: Modules do not check for buffer overflow (CWE-120) and format

strings manipulation. Consider using strcpy_s, strcat_s and a constant for the

format specifications.

For instance, in the second evidence there are no controls within the function to

ensure that all the characters of ‘name’ can be allocated in ‘newarg’.

Memory operations: Several times memory operations, done using memcpy, are

used without checking the size of source and destiny.

Evidence

%APR%\build\aplibtool.c (line 157)

strcpy(value, equal_pos + 1);

%APR%\build\aplibtool.c (line 272)

strcat(newarg, name);

%APR%\build\jlibtool.c (line 850)

memcpy(newarg, arg, arglen);

Recommendation/

Specific Solution

This finding does not have a direct impact on the security of the runtime code, as it

is part of a separate block (build tool) used exclusively during compilation time.

Before deciding to change it, one must take into account the risk of adding more

complexity to the code.

Specific Solution: Put in place controls to ensure that the source can be allocated

into the destination or:

o Replace all instances of strcpy with strcpy_s.

o Replace all instances of strcat with strcat_s.

Recommendation: The use of memcpy should only be considered after checking

the size of the destination memory position against the source, to avoid an

overflow.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: Apache Core & APR Code Review Results

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 33 of 36

4.4.2.3. Signal and Error Handling

Table 9: CBC-SEH-007 findings

CBC-SEH-007 Detect and handle standard library errors Info

Description

The majority of the standard library functions return a

valid value or a value of the correct return type that

indicates an error, but it is necessary that the

programmer detect and appropriately handle all

errors in accordance with error-handling policy.

Threat Low

Vulnerability Low

Impact Low

Checks 1 Verify and check the Standard C Library Errors list. X

Results

malloc: Lack of error checking functionality. If an error happens in ‘cc-> vals’, this

variable will be NULL. There should be a NULL check after line 352.

remove: Lack of error checking functionality, if an error happens in that line. There

should be a 0 check after line 606 to ensure the success of the operation.

fgets: Lack of error checking functionality, if an error happens in that line. There

should be a NULL check after line 969 to ensure that the path has received a

value.

Evidence

%APR%\build\jlibtool.c (line 325)

void init_count_chars(count_chars *cc)

{

cc->vals = (const char**)malloc(PATH_MAX*sizeof(char*));

cc->num = 0;

}

%APR%\build\aplibtool.c (line 606)

remove(fullname);

%APR%\build\jlibtool.c (line 969)

fgets(path, PATH_MAX, f);

Recommendation/

Specific Solution

This finding does not have a direct impact on the security of the runtime code, as it

is part of a separate block (build tool) used exclusively during compilation time.

Before deciding to change it, one must take into account the risk of adding more

complexity to the code.

Recommendation:

o A ‘NULL’ check should be used after the buffer creation to detect possible

errors and handle it properly.

o A ‘0’ check should be done after using the remove function in order to

detect possible errors.

o A ‘NULL’ check should be used after using fgets to detect possible errors

and handle it properly.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: Apache Core & APR Code Review Results

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 34 of 36

4.4.3. Findings controlled programmatically

During the code review, there were several findings that were identified that are a consequence of

the use of weak or deprecated functions. After a detailed review, it was determined that these

findings are controlled within the code in the current iteration of Apache. For this reason, the

findings were moved to a separate section, as the risk of using these functions has been

mitigated.

Before deciding to change them, one must take into account the risk of adding more complexity to

the code, and ensure that the mitigation of the risk that is provided via the code is maintained.

4.4.3.1. Framework Requirements

Table 10: SCD-FWK-001 findings

SCD-FWK-001 All frameworks and third party components are up-to-date Info

Description

All frameworks and components used are kept up-to-

date including all existing patches and security

hotfixes. The latest version is not needed but must be

at least patched.

Threat Low

Vulnerability Medium

Impact Low

Checks
1 Framework components are kept up-to-date. X

2 Third-party components are kept up-to-date. N/A

Results

_alloca: In the finding detected in the code, the use of this function in the version

evaluated is controlled by ensuring that the parameter is not large enough to cause

instability in its use.

Taking into account that this function is considered deprecated according to MSDN

(for Windows systems) due to the free-up memory controls it provides, it is

recommended to consider updating it to use the _malloca function alternative.

getpass: In the finding detected in the code, the use of this function in the version

evaluated is controlled by ensuring that the function will not be used under

Operating Systems in which this function could represent a security flaw.

Nevertheless this function is obsolete and not portable. This finding is highlighted

in order to keep it in mind for future developments.

It is something that adds risk to the code and should be mitigated whenever

possible. It is a bad practise to have deprecated or legacy code, as it leads to

instability and weaker security, even if it is controlled in its current version. Later

versions may override this and raise the finding again. Before deciding to change

it, one must take into account the risk of adding more complexity to the code.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: Apache Core & APR Code Review Results

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 35 of 36

Evidence

%APR%\network_io\win32\sendrecv.c (line 118)

pWsaBuf = (nvec <= WSABUF_ON_STACK) ? _alloca(sizeof(WSABUF) *

(nvec))

%APR%\password\apr_getpass.c (line 242)

char *pw_got = getpass(prompt);

Recommendation/

Specific Solution

Despite that this finding is controlled within the code it is included under this

section to keep them in mind for future development. Before deciding to change it,

one must take into account the risk of adding more complexity to the code.

Recommendation: The getpass function is obsolete due to its high insecurity. It

should never be used; instead, the functionality should be defined manually in the

code to ensure the proper processing of the information according to the needs of

the application.

Specific Solution: The _alloca function allocates memory on the stack in a

Windows system. This function is deprecated because a more secure version is

available. The recommendation is to use the new version: _malloca

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: Apache Core & APR Code Review Results

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 36 of 36

5 TECHNICAL CONCLUSIONS

The most relevant output to consider, and the first that stands out, is the nature of the findings.

Most of them are language-specific, instead of common, general ones. This is mostly due to the

nature of the software section reviewed, as it is the core and it does not contain as many

business logic and functionalities as other parts. Furthermore, it is important to highlight that this

software is actively maintained and upgraded, with periodic bug-fixes and patches provided not

only for the latest versions but also for legacy ones.

The focus of the code review was on the core backend part of Apache, specifically on

modules/core and APR. This is a critical section from a security point of view, even if it is not as

‘visible’ as other front-end modules that are usually reviewed during pentesting and vulnerability

assessments.

Another interesting aspect to highlight is the programming language used in this code. It is written

in C, which is a complex language from a security point of view. It provides a very high level of

flexibility and customisation, especially when compared with other modern languages used for

software development.

This leads to one of the areas to focus on: its memory management features or, to be more

precise, the lack of exception management in those features. The main focus of a code review in

C must always include an in-depth review of the use of memory, as C allows direct access to it

without providing exception support.

In conclusion, the code review carried out confirmed the fact that the code of both Apache Core

and APR have a good level from a security point of view, with only a few controls with

findings, none of them being of high severity.

As a final note, it is fundamental to take into account that these findings cannot be directly

considered security flaws that can be exploited, since ‘Security’ is a set of layers and therefore

several risky findings are necessary to compromise the software.

