

WP6

DIGIT B1 - EP Pilot Project 645

Deliverable 1: Code Review Results Report

KeePass Password Safe

Specific contract n°226 under Framework Contract n° DI/07172 – ABCIII

 October 2016

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: KeePass Code Review Results Report

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 2 of 43

Author:

Disclaimer

The information and views set out in this publication are those of the author(s) and do not necessarily

reflect the official opinion of the Commission. The content, conclusions and recommendations set out in

this publication are elaborated in the specific context of the EU – FOSSA project.

The Commission does not guarantee the accuracy of the data included in this study. All representations,

warranties, undertakings and guarantees relating to the report are excluded, particularly concerning – but

not limited to – the qualities of the assessed projects and products. Neither the Commission nor any person

acting on the Commission’s behalf may be held responsible for the use that may be made of the

information contained herein.

© European Union, 2016.

Reuse is authorised, without prejudice to the rights of the Commission and of the author(s), provided that

the source of the publication is acknowledged. The reuse policy of the European Commission is

implemented by a Decision of 12 December 2011.

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2011:330:0039:0042:EN:PDF

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: KeePass Code Review Results Report

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 3 of 43

Report Summary

Title KeePass Password Safe

Project Owner KeePass Community

DIGIT Sponsor EU-FOSSA project

Author DIGIT

Type Public

Version V 0.3 Version date 10/10/2016

Reviewed by EU-FOSSA Team Revision date 02/11/2016

Approved by European Commission - Directorate-
General for Informatics (DIGIT)

Approval date To be
approved

 Nº Pages 43

Distribution list

Name and surname Area Copies

IT contacts To be identified To be identified

FOSS Communities Apache security Team 1

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: KeePass Code Review Results Report

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 4 of 43

Contents

CONTENTS... 4

LIST OF TABLES ... 6

LIST OF FIGURES ... 7

ACRONYMS AND ABBREVIATIONS ... 8

1 INTRODUCTION .. 9

1.1. CONTEXT .. 9

1.2. OBJECTIVE .. 9

1.3. SCOPE .. 10

1.4. DELIVERABLES .. 10

2 EXECUTIVE SUMMARY ... 11

3 METHODOLOGY ... 14

3.1. PLANNING ... 15

3.2. EXECUTION ... 15

3.3. ASSESSMENT .. 18

4 CODE REVIEW DETAILS ... 20

4.1. INITIAL CONSIDERATIONS ... 20

4.2. PLANNING ... 21

4.3. OVERVIEW OF RESULTS ... 21

4.3.1. General Findings .. 22

4.3.2. Language-Specific Findings ... 24

4.4. DETAILED RESULTS ... 30

4.4.1. Logging / Auditing ... 31

4.4.1.1. Log Configuration Management .. 31

4.4.2. Secure Code Design .. 32

4.4.2.1. Framework Requirements ... 32

4.4.2.2. Variable types / operations.. 33

4.4.3. Specific C Controls ... 34

4.4.3.1. Variable Management ... 34

4.4.3.2. Memory Management ... 35

4.4.4. Specific C++ Controls ... 36

4.4.4.1. Object-Oriented Programming .. 36

4.4.5. Findings controlled programmatically ... 37

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: KeePass Code Review Results Report

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 5 of 43

4.4.5.1. Error Handling ... 37

4.4.5.2. Specific C controls: Environment .. 38

4.4.5.3. Specific C Controls: Miscellaneous ... 39

4.4.5.4. Specific C++ Controls: Variable Management .. 40

4.4.5.5. Specific C++ Controls: Object-Oriented Programming .. 41

4.4.5.6. Specific C++ Controls: Miscellaneous ... 42

5 TECHNICAL CONCLUSIONS ... 43

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: KeePass Code Review Results Report

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 6 of 43

List of Tables

Table 1: Global risk evaluation ... 19

Table 2: Checklist general controls .. 22

Table 3: Check-list language-specific controls ... 25

Table 4: LOG-CFG-004 findings .. 31

Table 5: SCD-FWK-001 findings .. 32

Table 6: SCD-VTY-002 findings ... 33

Table 7: CBC-VMG-008 findings .. 34

Table 8: CBC-VMG-023 findings .. 34

Table 9: CBC-MEM-005 findings ... 35

Table 10: CPP-OOP-001 findings .. 36

Table 11: EHI-EHD-002 findings .. 37

Table 12: CBC-ENV-004 findings .. 38

Table 13: CBC-MSC-001 findings .. 39

Table 14: CPP-VMG-007 findings .. 40

Table 15: CPP-VMG-008 findings .. 40

Table 16: CPP-OOP-007 findings .. 41

Table 17: CPP-MSC-001 findings .. 42

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: KeePass Code Review Results Report

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 7 of 43

List of Figures

Figure 1: General overview .. 11

Figure 2: Risk Level ... 12

Figure 3: Methodology phases ... 14

Figure 4: Test category levels .. 14

Figure 5: Code review execution order .. 16

Figure 6: Code review planning ... 21

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: KeePass Code Review Results Report

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 8 of 43

Acronyms and Abbreviations

DG Directorate General

EC European Commission

FOSS Free and Open Source Software

FOSSA Free and open Source Software Auditing

GUI Graphic User Interface

IDE Integrated Development Environment

WP Work Package

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: KeePass Code Review Results Report

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 9 of 43

1 INTRODUCTION

1.1. Context

The security of the applications used nowadays has become a major concern for organisations,

companies and citizens in general. Applications are becoming a more common part of our daily

lives, and are being used for business and leisure purposes alike. The information managed by

these applications has become the most essential asset to protect, as it includes personal

information, internal data, industrial property, etc.

From a security point of view, this new scenario presents many new challenges that need to be

addressed in order to protect the integrity and confidentiality of the data managed by the

applications and their users.

Furthermore, the exposure of the applications to the Internet has turned them into a prime target,

due to the value that this private and internal information has.

One of the advantages of Free and Open-Source Software (FOSS) is that its source code is readily

available for review by anyone, and therefore it virtually enables any user to check and provide new

features and fixes, including security ones. Also, from a more professional point of view, it allows

organisations to review the code completely and to find the vulnerabilities or weaknesses that it

presents, allowing for a refinement of their security and ending up in a safer experience for all the

users of the applications.

1.2. Objective

The objective of this document is to provide the results of the code review of KeePass Password

Safe software. This review is carried out within the EU-FOSSA (Free and Open-Source Software

Auditing) project, focusing on the security aspects of the software.

The objective of this code review is to examine the KeePass Password Safe software, focusing

mainly on its security aspects, the risk that they pose to its users and the integrity and confidentiality

of the data contained within.

KeePass is a free and open source software tool that helps manage passwords in a secure way.

All passwords can be stored in one database, which is locked with one master key or a key file.

Thus it is only necessary to remember one master password or to select the key file to unlock the

whole database.

The databases are encrypted using the AES and Twofish encryption algorithms.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: KeePass Code Review Results Report

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 10 of 43

1.3. Scope

The scope of the project is as follows:

Application name KeePass Password Safe Review start 24/08/2016

Code review owner
European Commission - Directorate-General
for Informatics (DIGIT)

Review end 23/09/2016

Objective Security Code Review

Num. Lines 84 622 Version 1.31 Programming language C++

Code Review Mode 1-Managed 2-Defined 3-Optimised

Libraries
 MFC v 9.0 (It is not within the scope of the code review because this

is a proprietary code from Microsoft)

Extensions/plugins N/A

Services required N/A

Result visibility Internal Restricted Public

Critical notification During assessment Dominik Reichl dominik.reichl@t-online.de

Categories

Data/Input
Management

Error Handling /
Information Leakage

 Specific C controls

Authentication
Controls

Software
Communications

Specific C++
controls

Session
Management

 Logging/Auditing
Specific JAVA
controls

X

Authorisation
Management

 Secure Code Design
Specific PHP
controls

X

Cryptography
Optimised Mode
Controls

Comments

The code review of the KeePass Password Safe includes:

1. KeePass v 1.31

Since version 1.21, KeePass has been developed and compiled using Visual

Studio 2008 (with MFC 9.0)

1.4. Deliverables

1 WP2 - Deliverable 11: Design of the methods for performing the code reviews List of methods for

communicating the results of code reviews

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: KeePass Code Review Results Report

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 11 of 43

2 EXECUTIVE SUMMARY

The results of the tests and controls evaluated in this code review provided a number of relevant

findings regarding the application reviewed. A general overview is depicted in Figure 1, which shows

the findings and their impact on the categories included in the analysis.

84 622 lines were reviewed, comprising the totality of Lines of Code of the application. To optimise

the process, the total was divided in 33 sets (or ‘batches’) of code, and distributed among the EU-

FOSSA project code review team.

Figure 1 shows an overview of the results with the number of failed controls (findings) ordered by

their assessment value.

Figure 1: General overview

In relation to the control categories, findings were discovered in these categories:

• Error Handling / Information Leakage

• Logging / Auditing

• Secure Code Design

• Specific C controls

• Specific C++ controls

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: KeePass Code Review Results Report

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 12 of 43

The total number of findings (14) can be considered as low when compared to the 218 controls

reviewed.

The remaining categories of controls successfully passed the review with no relevant findings.

No critical or high-risk findings were detected. Among the remaining findings, five medium and

three low risk results were detected. The remaining six were of an informative nature.

A summary of the findings is depicted in Figure 2, which compares the failed controls found and

indicates their distribution within the different risk levels.

Figure 2: Risk Level

This shows that the impact of the findings varies from one risk level to another. It is recommended to

give priority to the following findings found during the code review:

Critical findings

No critical vulnerabilities were found in this code review.

High-risk findings

No high risk vulnerabilities were found in this code review.

Medium-risk findings

The findings categorised as medium risk can have a reasonable impact at a technical and business

level; their resolution is recommended although it does not need to be prioritised. The details of the

vulnerabilities found are:

 Ensure that floating-point conversions are within range of new type (id: CBC-VMG-008):

Any errors in the type conversion must be controlled and managed: There are no error

management controls of the return method GetUpperBound().

 Allocate sufficient memory for an object (CBC-MEM-005): The ‘_tcslen’ function is not

capable of handling strings that are not \0-terminated. If such a string is passed without \0-

0 0

5

3

6

0

2

4

6

8

Critical High Medium Low Info

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: KeePass Code Review Results Report

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 13 of 43

termination, the function will execute an over-read and will potentially cause the application to

crash if no further controls are in-place. Related CWE: CWE-126.

 Do not call the System() function (id: CBC-ENV-004): The use of the system() functions can

result in exploitable vulnerabilities that would allow the execution of arbitrary system commands.

shellExecute: This causes a new program to execute and it is difficult to use safely. This

situation is controlled within the code. All hyperlink UI controls in KeePass have well-defined,

fixed URLs. However the control and the findings are still in this report, under the section

Findings Controlled Programmatically, due to its severity and to keep this in mind for future

developments.

 Do not use the rand() function to generate pseudorandom numbers (CBC-MSC-001):

rand(): The ‘rand()’ function is no longer safe, as it does not provide enough entropy to be

considered apt for security applications. The use of alternative functions is recommended, such

as ‘random()’. Related CWE: CWE-327. This situation is controlled within the code and rand() is

only used in situations where weak random numbers are sufficient. However the control and the

findings are still in this report, under the section Findings Controlled Programmatically, due to its

severity and to keep this in mind for future developments.

 Do not use std::rand() for generating pseudorandom numbers (CPP-MSC-001):

std::rand():This function is not sufficiently random for security-related functions such as key and

nonce creation. Related CWE: CWE-327. This situation is controlled within the code and

std::rand() is only used in situations where weak random numbers are sufficient. However the

control and the findings are still in this report, under the section Findings Controlled

Programmatically, due to its severity and to keep this in mind for future developments.

The rest of the findings categorised as either low or informative are still relevant and should be

resolved as well. However, due to their low impact on the overall security, there is no need to fix

them in the short term.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: KeePass Code Review Results Report

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 14 of 43

3 METHODOLOGY

The methodology followed to carry out the code review is summarised in Figure 3. This methodology

covers from the initial planning phase to an optional post-audit support phase.

Furthermore, each one of these phases is divided into several mayor tasks.

Figure 3: Methodology phases

Preparation Managed Mode Technical Report Report

Test Design

 Defined Mode

Impact Analysis
 Report

Dissemination

Environment
Configuration

Optimised Mode

 Finding
Prioritisation

Post-audit

In the execution phase, a set of controls is checked by the code reviewers in order to properly

verify the security and stability of the code. These controls and checks are grouped in a checklist

presented in Section 4.3. Overview of Results, to facilitate the viewing of the findings.

Figure 4: Test category levels

As seen in Figure 4, there are two main groups of controls: the common ones (applicable regardless

of the language of the code) and language-specific controls (for C, C++, JAVA or PHP). A

combination of both should be used in any code review to ensure the most accurate results

(explained in WP2 - Deliverable 11: Design of the methods for performing the code reviews).

Planning Execution Assessment Reporting

Methodology test categories

Category
1

Category
2

Common checklist

Check 1

Check 2

Language-specific checklist

Check 1 Check 2

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: KeePass Code Review Results Report

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 15 of 43

3.1. Planning

The first phase of the methodology covers the information gathering activities needed in order to

properly plan and carry out the code review. This includes the compilation of basic information about

the code to be reviewed, an analysis of the applicable controls and the preparation of the testing

environment if any specific requirements are demanded by the particularities of the code.

This information was obtained from the stakeholders requesting the code review and from the

developers or IT maintainers where applicable. Once this phase is finished, all needs should have

been met in order to start the test cases.

To further organise this phase, three main activities have been defined:

 Preparation: this activity comprises all the interviews, meetings and information gathering

activities needed to properly define the scope, objectives and needs of the code to be

reviewed.

 Test Design: once the scope, objectives and custom needs of the code have been

identified, the next logical step is to establish the test cases that are going to be considered

in order to achieve the objectives that have been set. This is reflected in the checklist,

indicating those cases that are not applicable.

 Environment Preparation: before starting the next phase, it is necessary to ensure that the

testing environment is prepared to carry out the tests selected during the previous activity.

This includes the installation and configuration of the tools.

3.2. Execution

The next phase covers the execution of the test cases selected for the code review in the previous

phase, taking into consideration the scope, objectives and constraints set.

The execution process was divided into three sequential phases, each providing data as input for

the next one, as depicted in Figure 5. All of them were carried out by the code review team, using

both automated and manual tools.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: KeePass Code Review Results Report

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 16 of 43

Figure 5: Code review execution order

To further organise this phase, three main activities have been defined:

 Managed mode: this activity covers the execution of the automated tools selected for the analysis

of the code. The following categories were analysed:

o Data/Input Management (DIM): The data entry points of an application, service or library

are one of the weakest points of the code, and they must be controlled against

unexpected values. The subcategories covered are as follows:

 File Input / Output Management (FIM)

 Data stream management (DSM)

 Character encoding management (CEM)

 Input validation and sanitisation (IVS)

 Sensitive Data Management (SDM)

 Entry point validation (EPV)

 XML schema validation (XSV)

o Authentication Controls (AUT): It covers any aspect related to the process during which

the code reviews and verifies the identity of another entity, such as a user. The

subcategories covered are as follows:

 Authentication verification (AUV)

 Password policy usage (PPU)

 Credential storage security (CST)

 User account protection (UAP)

 Password recovery process (PRP)

o Session Management (SMG): It covers all parts of the protection and management of user

sessions once they are authenticated against the solution. The subcategories covered are

as follows:

 Session creation (SCP)

 Session ID management (SID)

 Session lifecycle (SLC)

 Session logout (LGP)

Managed mode

Tests using
automated tools

Defined mode

Manual tests to
verify and expand
the results

Optimised mode

Manual tests to
evaluate specific
scenarios

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: KeePass Code Review Results Report

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 17 of 43

o Authorisation Management (ATS): This process is designed to ensure that when a

user or entity correctly authenticates against the application, it gets the proper

privileges assigned to it. The subcategories covered are as follows:

 Access control system (ACS)

 Privilege revision (PRV)

o Cryptography (CPT): Covers all aspects related to the protection via encryption of the

information and data in transit and at rest. The subcategories covered are as follows:

 Credential protection at rest (CPR)

 Cryptographic configuration (CRC)

o Error Handling/Information Leakage (EHI): The information provided by the

application errors, page metadata and sample content must be filtered to avoid a

leakage of sensitive information. The subcategories covered are as follows:

 Information leakage (INL)

 Sample files (SFL)

 Error handling (EHD)

o Software communications (COM): it comprises those functions that manage and

control network connections, including sockets and protocol functions. The

subcategories covered are as follows:

 HTTP Secure Management (HSM)

o Logging/Auditing (LOG): The logs generated by an application are a superb source of

information about its contents, workings and potential weaknesses. The

subcategories covered are as follows::

 Log configuration management (CFG)

 Log generation (GEN)

 Log sensitive information (LSI)

o Secure Code Design: There are several aspects related to the application itself and

the technologies and frameworks used for its implementation. The subcategories are

as follows:

 Framework requirements (FWK)

 Variable types / operations (VTY)

 Expressions/Methods (EXM)

 Defined Mode: once the managed mode activity is finished, the code review team generates a set

of results, by complementing these results with a full manual review of the applicable controls.

 Optimised Mode: The final part of the execution phase focuses on those sections of the

application found to be most at risk, alongside several more specific tests that require further

evaluation.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: KeePass Code Review Results Report

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 18 of 43

They are divided into the following subcategories:

o Concurrency (CCR)

o Denial of Service (DOS)

o Memory and resource management (MRM)

o Code Structure (COS)

o Role-privilege matrix (RPM)

The optimised mode covers the set of language-specific (C, C++, JAVA and PHP) controls, and other

controls related to code unique particularities. The language specific controls for C (CBC) are divided

into the following subcategories:

o PreProcessor (PRE)

o Variable Management (VMG)

o Memory Management (MEM)

o File I/O Management (FIO)

o Environment (ENV)

o Signal and Error Handling (SEH)

o Concurrency (CON)

o Miscellaneous (MSC)

The language specific controls for C++ (CPP) are divided into the following subcategories:

o Variable Management (VMG)

o Memory Management (MEM)

o File I/O Management (FIO)

o Exceptions and Error Handling (EEH)

o Object Oriented Programming (OOP)

o Concurrency (CON)

o Miscellaneous (MSC)

3.3. Assessment

This phase covers the analysis and evaluation of the findings identified in the previous phase, with

the objective of validating and assessing their real risk considering their Threat, Vulnerability and

Impact risk scores. Once these scores have been calculated, a prioritisation process is carried out to

identify those findings that should be fixed in a timely manner. Finally, if the vulnerability is unknown

and has not been reported before, the project owners might consider reporting it in a CVE, CWE,

CVSS or similar system.

To further organise this phase, three main activities have been defined:

 Technical Report Analysis: review of the results from the previous phase, validating the

findings and removing any incomplete, incorrect or false-positive results. As part of this

task, the findings are classified based on their category.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: KeePass Code Review Results Report

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 19 of 43

 Impact Analysis: Once the findings have been properly validated and classified, the next

step is to determine their Threat, Vulnerability and Impact risk scores:

o Threat factors: skill required opportunity and dimension.

o Vulnerability factors: ease of discovery, ease of exploitation and awareness.

o Impact factors: confidentiality, integrity and availability.

From the average result of these factors considered for the score, one of the following

scores is given to the Threat, Vulnerability and Impact risks, based on the numeric results:

0 to 3: Low 3 to 6: Medium 6 to 9: High

Finally, the checklist is completed adding the global risk posed by the controls, which is

calculated from the individual results (Threat, Vulnerability and Impact). Table 1 shows

how to calculate the global risk taking into consideration the Impact and the Probability

(Average value of both Threat and Vulnerability results).

Table 1: Global risk evaluation

Impact

High Medium High Critical

Medium Low Medium High

Low Info Low Medium

 Low Medium High

 Probability (Avg. Threat & Vulnerability)

The possible values are Critical, High, Medium, Low or Info. If an issue is found, it is

marked with an X; if no issues are found, it is marked with , and if the control is not

applicable it is marked with N/A.

 Finding Prioritisation: The prioritisation of the findings is based on their criticality, and the

results are communicated as established in the initial phases of the project.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: KeePass Code Review Results Report

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 20 of 43

4 CODE REVIEW DETAILS

4.1. Initial Considerations

The application to review contained several particularities that needed to be identified in order to

ensure the proper analysis of the code. This included characteristics such as frameworks or libraries

implemented, and the different aspects of the modules in use.

The main focus of this code review was on the KeePass 1.31 application. In order to carry out the

review, the application files were divided into groups, following the libraries and modules already

defined by the application itself.

The distribution of software files and batches can be found in the following excel file:

Batches_and_files.xl

sx

KeePass 1.31

Batch Files Lines Batch Files Lines

KeePassLibC 12 1.405 WinGUI_Util 14 2.146

KPLC_KeePassAPI (omitted) 0 0 WinGUI_Util_CmdLine 10 998

KeePassLibCpp 7 3.343 WinGUI_Util_SprEngine 4 481

KPLCpp_Crypto 20 6.279 WinGUI-B 8 2.342

KPLCpp_Crypto_SHA2
(omitted)

0 0 WinGUI-C 16 2.228

KPLCpp_DataExchange 4 1.951 WinGUI-D 10 2.552

KPLCpp_Details 4 1.913 WinGUI-E 8 2.595

KPLCpp_IO 6 532 WinGUI-F 9 1.424

KPLCpp_PasswordGenerator 8 1.174 WinGUI_Util-B 14 2.393

KPLCpp_SDK 15 1.828 WinGUI_Util-C 4 2.062

KPLCpp_SysSpec_Win 4 1.123 NewGUI-B 2 6.001

KPLCpp_Util 22 4.983 NewGUI-C 2 3.647

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: KeePass Code Review Results Report

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 21 of 43

Batch Files Lines Batch Files Lines

WinGUI 2 12.659 NewGUI-D 2 2.779

NewGUI 2 2.816 NewGUI-E 20 2.271

NewGUI_TaskbarListEx 3 179 NewGUI-F 10 1.797

NewGUI_TaskDialog 2 342 NewGUI-G 8 2.488

NewGUI_VistaMenu 2 135 NewGUI-H 14 3.033

WinGUI_Plugins 16 2.723

4.2. Planning

The code review was performed following the planning stipulated at the beginning of the project and

taking into consideration the tests selected and the size/complexity of the application to review. The

final planning is detailed in Figure 6, including the dates and time required for each step.

Figure 6: Code review planning

4.3. Overview of Results

The controls used in the code review were generated within the EU-FOSSA project, derived from the

proposals from two well-known software security authorities: the Application Security Verification

Standard from OWASP, and the secure coding standard of C and C++ from ‘the Carnegie Mellon

Software Engineering Institute (SEI)’.

Not all the controls available from the set defined by EU-FOSSA are applicable to this code review.

This is due to the fact that the EU-FOSSA control set contemplates a wide array of features and

characteristics, such as a given functionality not present on the code review conducted. For

example, the controls related to the Authentication category were not checked as this functionality is

not present in KeePass.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: KeePass Code Review Results Report

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 22 of 43

Each control has a unique identifier, following the template below:

[CAT]-[SUB]-[###]

Legend:

[CAT] Control category.
[SUB] Control subcategory.
[###] Control number.

4.3.1. General Findings

Table 2 shows a summary of all the general controls reviewed, and it gathers the set of controls of

the methodology used in the code review project. Those controls that are out of the scope of this

specific analysis have also been included, but marked as N/A. The findings are associated with the

controls affected, and not with the number of detections therein. This means that if two detections

were found in the same control, only one will appear in this table (as it is a reference). More details

can be found in Section 4.4, which contains evidence of each finding identified as a potential issue

(evidence row). However, these findings should be checked in the entire code, as there could more

detections.

Table 2: Checklist general controls

ID Control Result

DIM-FIM-001 Deletion of temporary files

DIM-FIM-002 File permissions at creation

DIM-FIM-003 Ensure that all files are closed after use

DIM-FIM-004 Usage of canonical path of files

DIM-FIM-005 Always check EOF on streams I/O operations

DIM-FIM-006 Updated file management

DIM-DSM-001 All data streams have to be closed after use

DIM-DSM-002 Get all valid data contained in a data stream

DIM-CEM-001 Correct format exchange of binary to string data

DIM-CEM-002 Normalise all string inputs NA

DIM-IVS-001 Data input validation

DIM-IVS-002 Data output validation NA

DIM-XSV-001 Review the XML schema, or DTD, used and its structure NA

DIM-XSV-002
Data is sanitised before constructing and sending it in XML
format

NA

AUT-AUV-001
The application uses a robust authentication verification
process

NA

AUT-PPU-001 The application makes use of a complex password policy NA

AUT-PPU-002 Password history is maintained NA

AUT-PPU-003 Passwords must expire after a set amount of time NA

AUT-CST-001 Protection of the password at rest

AUT-UAP-001 Number of login attempts is limited NA

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: KeePass Code Review Results Report

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 23 of 43

ID Control Result

AUT-UAP-002 Connections from uncommon locations are restricted

AUT-PRP-001 A password recovery process is defined NA

AUT-PRP-002 Password recovery process requires additional validation steps

AUT-PRP-003 User is warned of any password recovery attempts NA

SMG-SCP-001 Review controls in place to assign user privileges

SMG-SCP-002 Server keeps a list of all active identifiers and their data NA

SMG-SCP-003 Session cookies are protected and do not have sensitive data NA

SMG-SID-001 A unique ID is assigned to each individual user session NA

SMG-SID-002 Control active sessions at any time NA

SMG-SLC-001 Session timeouts are implemented NA

SMG-SLC-002 Privilege management NA

SMG-LGP-001
ID, assignations, privileges and resources are discarded on
logout

SMG-LGP-002
Logout functionality should terminate the session and
connection

ATZ-ACS-001
Use only trusted system objects for access authorisation
decisions

NA

ATZ-ACS-002 Authorisation rules and process

ATZ-PRV-001 Privileges and roles NA

ATZ-PRV-002 Privilege modification

CPT-CPR-001 Sensitive information is stored securely using encryption

CPT-CPR-002 Information stored is hashed to preserve its integrity

CPT-CRC-001 Review cryptographic configuration parameters

CPT-CRC-002 Management cryptographic keys

EHI-INL-001 Metadata leakage on any files accessible by the users NA

EHI-INL-002 Comments accessible in any client-side code files NA

EHI-INL-003 Internal routes and paths must not be shown as default routes

EHI-SFL-001 Sample files must be removed or filtered by the server NA

EHI-EHD-001 Application errors must be controlled in the GUI

EHI-EHD-002 Try-catch-finally block X Info

EHI-EHD-003 Correct Exception and Error Management

EHI-EHD-004 Object is restored to a previous state after an error or failure NA

EHI-EHD-005 Third-party services and libraries errors are controlled locally

COM-HSM-001 Avoid HTTP Response Splitting

COM-HSM-002 Prevent Directory Traversal NA

COM-HSM-003 HTTP Strict Transport Security NA

COM-HSM-004 Avoidance of redirects and forwards in webpages NA

LOG-CFG-001 Logs are properly configured

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: KeePass Code Review Results Report

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 24 of 43

ID Control Result

LOG-CFG-002 Logs register only the information needed for their purpose NA

LOG-CFG-003 Debug Logging

LOG-CFG-004 Logging exceptions X Info

LOG-GEN-001 Log generation must continue after a log system exception NA

LOG-LSI-001
Logs must not contain sensitive information, or else use
hashes

NA

LOG-LSI-002 User passwords and tokens must be omitted from logs

SCD-FWK-001 All frameworks and third party components are up-to-date X Low

SCD-VTY-001 Review operation on numeric values and bit collections

SCD-VTY-002
On division operations, check that the divisor does not equal
zero

X
Low

SCD-VTY-003 Direct comparisons with NaN must not be carried out

SCD-VTY-004 Do not use floating-point variables as loop counters

SCD-EXM-001 Function return values are parsed and evaluated

SCD-EXM-002 Method arguments must fall within the established bounds

OPT-CCR-001 Ensure that instance locks are controlled NA

OPT-CCR-002
Do not use unsafe operations, expressions or methods in
Threads

OPT-CCR-003 Thread pools must be controlled

OPT-DOS-001 Check DoS vulnerabilities on the application NA

OPT-MRM-001 Review the memory management process

OPT-MRM-002 Review resource management process

OPT-COS-001 Evaluate processes that call back to the code multiple times NA

OPT-COS-002 There is a clear separation between the application layers NA

OPT-RPM-001 Analyse role-privilege matrix used on the application NA

4.3.2. Language-Specific Findings

Table 3 contains a summary of all the language-specific controls reviewed; in this case only C and

C++ languages controls apply (the controls for JAVA and PHP are not included). Those controls

that are out of the scope for this specific analysis (because they do not apply) have also been

included, but marked as N/A.

The findings are associated with the controls affected, and not with the number of detections

therein. This means that if two detections were found on the same control, only one will appear in

this table (as it is a reference). The details of the findings can be found in Section 4.4.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: KeePass Code Review Results Report

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 25 of 43

Table 3: Check-list language-specific controls

ID Control Result

CBC-PRE-001
Do not create a universal character name through
concatenation

CBC-PRE-002 Avoid side effects in arguments to unsafe macros NA

CBC-PRE-003
Do not use pre-processor directives in invocations of
function like macros

CBC-VMG-001 Declare objects with appropriate storage durations

CBC-VMG-002 Declare identifiers before using them

CBC-VMG-003 Do not declare and identifier with conflicting linkage

CBC-VMG-004 Do not declare or define a reserved identifier

CBC-VMG-005
Use the correct syntax when declaring a flexible array
member

CBC-VMG-006
Do not create incompatible declarations of the same
function or object

CBC-VMG-007
Do not declare variables inside a switch statement before
the first case label

CBC-VMG-008
Ensure that floating-point conversions are within range of
new type

X Medium

CBC-VMG-009
Preserve precision when converting integral values to
floating-point type

NA

CBC-VMG-010
Do not use object representations to compare floating-point
values

CBC-VMG-011
Do not form or use out-of-bounds pointers or array
subscripts

CBC-VMG-012
Ensure size arguments for variable length arrays are in a
valid range

CBC-VMG-013
Do not subtract or compare two pointers that do not refer to
the same array

NA

CBC-VMG-014
Do not add or subtract an integer to a pointer to a non-array
object

NA

CBC-VMG-015 Guarantee that library functions do not form invalid pointers NA

CBC-VMG-016 Do not add or subtract a scaled integer to a pointer

CBC-VMG-017 Do not attempt to modify string literals

CBC-VMG-018
Guarantee that string storage has sufficient space for
character data and the null terminator

NA

CBC-VMG-019
Do not pass a non-null-terminated character sequence to a
library function that expects a string

CBC-VMG-020
Cast characters to unsigned char before converting to
larger

CBC-VMG-021
Do not confuse narrow and wide character strings and
functions

CBC-VMG-022 Do not read uninitialised memory

CBC-VMG-023 Do not dereference null pointers X Low

CBC-VMG-024 Do not dereference null pointers

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: KeePass Code Review Results Report

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 26 of 43

ID Control Result

CBC-VMG-025
Variables must not be accessed using an incompatible type
pointer

CBC-VMG-026
Prevent undefined behaviour when restrict-qualified
pointers are used

NA

CBC-VMG-027
Do not apply operands within the sizeof, _Alignof or
_Generic functions

CBC-VMG-028
Ensure that unsigned and signed integer operations are
managed correctly

CBC-MEM-001 Do not access freed memory NA

CBC-MEM-002 Free dynamically allocated memory when no longer needed NA

CBC-MEM-003
Allocate and copy structures containing a flexible array
member dynamically

CBC-MEM-004 Only memory allocated dynamically should be freed

CBC-MEM-005 Allocate sufficient memory for an object X Medium

CBC-MEM-006 Do not modify the alignment of objects by calling realloc() NA

CBC-FIO-001 Exclude user input from format strings NA

CBC-FIO-002
Do not perform operations on devices that are only
appropriate for files

NA

CBC-FIO-003
Do not assume that fgets() or fgetws() returns a nonempty
string when successful

NA

CBC-FIO-004 Do not copy a FILE object

CBC-FIO-005
Do not alternately input and output from a stream without
an intervening flush or positioning call

CBC-FIO-006 Reset strings or fgets() or fgetws() failure NA

CBC-FIO-007
Do not call getc(), putc(), getwc(), or putwc() with a stream
argument that has side effects

NA

CBC-FIO-008
Only use values for fsetpos() that are returned from
fgetpos()

NA

CBC-FIO-009 Avoid TOCTOU race conditions while accessing files NA

CBC-FIO-010 Do not access a closed file

CBC-ENV-001
Do not modify the object referenced by the return value of
certain functions

CBC-ENV-002
Do not rely on an environment pointer following an
operation that may invalidate it

CBC-ENV-003 All exit handlers must return normally

CBC-ENV-004 Do not call system() X Medium

CBC-ENV-005 Do not store pointers returned by certain functions

CBC-ENV-006 Ensure proper usage of the readlink() function

CBC-ENV-007
Do not call putenv() with a pointer to an automatic variable
as the argument

CBC-ENV-008
Proper privilege revocation and relinquish process must be
defined

NA

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: KeePass Code Review Results Report

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 27 of 43

ID Control Result

CBC-SEH-001
Call only asynchronous-safe functions within signal
handlers

NA

CBC-SEH-002 Do not access shared objects in signal handlers

CBC-SEH-003 Do not call signal() from within interruptible signal handlers NA

CBC-SEH-004 Do not return from a computational exception signal handler

CBC-SEH-005
Set errno to zero before calling a library function known to
set errno, and check errno only after the functions returns a
value indicating failure

NA

CBC-SEH-006 Do not rely on indeterminate values of errno NA

CBC-SEH-007 Detect and handle standard library errors

CBC-SEH-008 Detect errors when converting a string to a number NA

CBC-CON-001 Clean up thread-specific storage

CBC-CON-002 Do not destroy a mutex while it is locked

CBC-CON-003
Prevent data races when accessing bit-fields from multiple
threads

CBC-CON-004 Avoid race conditions when using library functions and files NA

CBC-CON-005
Declare objects shared between threads with appropriate
storage durations

NA

CBC-CON-006 Avoid deadlock by locking in a predefined order NA

CBC-CON-007 Wrap functions that can spuriously wake up in a loop NA

CBC-CON-008 Do not call signal() in a multithreaded program NA

CBC-CON-009
Do not join or detach a thread that was previously joined or
detached

NA

CBC-CON-010 Do not refer to an atomic variable twice in an expressions NA

CBC-CON-011 Wrap functions that can fail within a loop NA

CBC-CON-012 Do not use the vfork() function NA

CBC-CON-013 Do not use signals to terminate threads NA

CBC-MSC-001
Do not use the rand() function for generating
pseudorandom numbers

X Medium

CBC-MSC-002 Properly seed pseudorandom number generators NA

CBC-MSC-003 Do not pass invalid data to asctime() function

CBC-MSC-004
Ensure that control never reaches the end of a non-void
function

CBC-MSC-005
Do not treat a predefined identifier as an object if it might
only be implemented as a macro

CBC-MSC-006
Do not call va_arg() on a va_list that has an indeterminate
value

NA

CBC-MSC-007 Do not violate constraints NA

CPP-VMG-001 Do not define a C-style variadic function NA

CPP-VMG-002
Overload allocation and deallocation functions as a pair in
the same scope

NA

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: KeePass Code Review Results Report

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 28 of 43

ID Control Result

CPP-VMG-003
Do not recursively re-enter a function during the
initialization of one of its static objects

NA

CPP-VMG-004
Destructors and deallocation functions must be declared
noexcept

CPP-VMG-005 Do not define an unnamed namespace in a header file NA

CPP-VMG-006 Do not cast to an out-of-range enumeration value

CPP-VMG-007
Guarantee that container indices and iterators are within the
valid range

X Info

CPP-VMG-008 Guarantee that library functions do not form invalid iterators X Info

CPP-VMG-009 Use valid iterator ranges

CPP-VMG-010
Do not subtract iterators that do not refer to the same
container

NA

CPP-VMG-011
Do not use an additive operator on an iterator if the result
would overflow

NA

CPP-VMG-012 Do not use pointer arithmetic on polymorphic objects NA

CPP-VMG-013
Guarantee that storage for strings has sufficient space for
character data and the null terminator

CPP-VMG-014 Do not pass a null pointer to char_traits::length

CPP-VMG-015
Use valid references, pointers, and iterators to reference
elements of a basic_string

CPP-VMG-016 Range check element access

CPP-VMG-017
Do not delete an array through a pointer of the incorrect
type

NA

CPP-VMG-018 Do not rely on side effects in unevaluated operands

CPP-VMG-019
Do not access a cv-qualified object through a cv-unqualified
type

CPP-VMG-020 Do not cast pointers into more strictly aligned pointer types NA

CPP-VMG-021 Do not cast or delete pointers to incomplete classes NA

CPP-VMG-022 Use offsetof() on valid types and members NA

CPP-VMG-023
A lambda object must not outlive any of its reference
captured objects

NA

CPP-VMG-024
Do not access the bits of an object representation that are
not part of the object's value representation

CPP-VMG-025 Do not rely on the value of a moved-from object

CPP-MEM-001 Properly deallocate dynamically allocated resources NA

CPP-MEM-002 Detect and handle memory allocation errors NA

CPP-MEM-003
Explicitly construct and destruct objects when manually
managing object lifetime

NA

CPP-MEM-004
Provide placement new with properly aligned pointers to
sufficient storage capacity.

NA

CPP-MEM-005
Honor replacement dynamic storage management
requirements

NA

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: KeePass Code Review Results Report

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 29 of 43

ID Control Result

CPP-MEM-006
Do not store an already-owned pointer value in an
unrelated smart pointer

NA

CPP-MEM-007 Avoid using default operator 'new' for over-aligned types

CPP-EEH-001 Do not call std::terminate(), std::abort(), or std::_Exit()

CPP-EEH-002 Do not use setjmp() or longjmp() NA

CPP-EEH-003
Do not reference base classes or class data members in a
constructor or destructor function-try-block handler

CPP-EEH-004
Catch handlers should order their parameter types from
most derived to least derived

CPP-EEH-005 Honor exception specifications NA

CPP-EEH-006 Guarantee exception safety

CPP-EEH-007 Do not leak resources when handling exceptions NA

CPP-EEH-008
Constructors of objects with static or thread storage
duration must not throw exceptions

NA

CPP-EEH-009 Exception objects must be nothrow copy constructible NA

CPP-EEH-010 Catch exceptions by lvalue reference NA

CPP-OOP-001
Do not invoke virtual functions from constructors or
destructors

X Info

CPP-OOP-002 Do not slice derived objects NA

CPP-OOP-003
Do not delete a polymorphic object without a virtual
destructor

CPP-OOP-004 Write constructor member initialisers in the canonical order NA

CPP-OOP-005
Do not use pointer-to-member operators to access non-
existent members

NA

CPP-OOP-006 Honor replacement handler requirements NA

CPP-OOP-007
Prefer special member functions and overloaded operators
to C Standard Library functions

X Info

CPP-CON-001
Ensure actively held locks are released on exceptional
conditions

NA

CPP-CON-002
Do not speculatively lock a non-recursive mutex that is
already owned by the calling thread

NA

CPP-MSC-001
Do not use std::rand() for generating pseudorandom
numbers

X Medium

CPP-MSC-002 Ensure your random number generator is properly seeded NA

CPP-MSC-003 Obey the one-definition rule

CPP-MSC-004 Do not modify the standard namespaces NA

CPP-MSC-005
Value-returning functions must return a value from all exit
paths

CPP-MSC-006 Do not return from a function declared [[noreturn]]

CPP-MSC-007 A signal handler must be a plain old function NA

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: KeePass Code Review Results Report

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 30 of 43

4.4. Detailed Results

This chapter defines in detail each of the tests carried out, including the checks performed, the results

obtained and any relevant evidence. Each control includes three scores: Threat, Vulnerability and Impact.

There were a total of 14 controls with findings. These controls belong to the following categories and sub-

categories:

 Error Handling / Information Leakage

 Error Handling (1 info)

 Logging / Auditing

 Log Configuration Management (1 info)

 Secure Code Design

 Framework Requirements (1 low)

 Variable types / operations (1 low)

 Specific C Controls

 Variable Management (1 medium, 1 low)

 Memory Management (1 medium)

 Environment (1 medium)

 Miscellaneous (1 medium)

 Specific C++ Controls

 Variable Management (2 info)

 Object-Oriented Programming (2 info)

 Miscellaneous (1 medium)

The following sections describe in detail the findings, checks, results, evidences and recommendations.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: KeePass Code Review Results Report

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 31 of 43

4.4.1. Logging / Auditing

4.4.1.1. Log Configuration Management

Table 4: LOG-CFG-004 findings

LOG-CFG-004 Logging exceptions Info

Description
Exceptions must be logged in a proper manner in
case they are not going to be thrown.

Threat Low

Vulnerability Low

Impact Low

Checks 1 Exceptions are logged after being handled. X

Results
There is no logging functionality implemented on the catch(…) block; therefore
any exception captured is not logged, nor is any trace left of this event recorded

Evidence

%root%\KeePassLibCpp\Details\PWFindImpl.cpp (Lines 51-60)

try
{

if(bCaseSensitive == FALSE)
spRegex.reset(new boost::basic_regex<TCHAR>((LPCTSTR)strFind,

boost::regex_constants::icase));
else

spRegex.reset(new boost::basic_regex<TCHAR>((LPCTSTR)strFind));
}
catch(...) { return DWORD_MAX; }

Recommendation /

Specific Solution
Recommendation: Log any exception captured that will not be thrown to have

a record of the event.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: KeePass Code Review Results Report

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 32 of 43

4.4.2. Secure Code Design

4.4.2.1. Framework Requirements

Table 5: SCD-FWK-001 findings

SCD-FWK-001 All frameworks and third party components are up-to-date Low

Description

All frameworks and components used are kept up-to-

date including all existing patches and security

hotfixes. Latest version is not needed but must be

patched at least.

Threat Medium

Vulnerability High

Impact Low

Checks
1 Framework components are kept up-to-date. X

2 Third-party components are kept up-to-date. N/A

Results

RegCreateKey: This function is provided only for compatibility with 16-bit
versions of Windows. Applications should use the RegCreateKeyEx function.
There is various evidence of this function within the code.

Evidence

%root%\WinGUI\PwSafe.cpp (Line 328)

 LONG l = RegCreateKey(HKEY_CLASSES_ROOT, _T(".kdb"), &hBase);

Recommendation/

Specific Solution

Specific Solution:

The usage of deprecated functions is discouraged.

o RegCreateKey: this function is provided only for compatibility with 16-bit

versions of Windows. Applications should use the RegCreateKeyEx

function.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: KeePass Code Review Results Report

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 33 of 43

4.4.2.2. Variable types / operations

Table 6: SCD-VTY-002 findings

SCD-VTY-002
On division operations, check that the divisor does not equal
zero

Low

Description
In division operations, the values must be checked
to ensure that no invalid values are operated and
that no value is divided by zero.

Threat Low

Vulnerability Low

Impact Medium

Checks

1 The fields of a division are checked for invalid values. X

2
Controls to ensure that no operation is done if the divisor equals
zero.

N/A

Results

The size of the ‘lpstrText’ variable is not tested against invalid or zero values.

Evidence

%root%\WinGUI\NewGUI\BCMenu.cpp (Line 1011)

size.cx += 3*(size.cx/(LONG)wcslen(lpstrText));

Recommendation/

Specific Solution

Recommendation: Check the ‘lpstrText’ variable to ensure that no invalid or
zero values are received.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: KeePass Code Review Results Report

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 34 of 43

4.4.3. Specific C Controls

4.4.3.1. Variable Management

Table 7: CBC-VMG-008 findings

CBC-VMG-008
Ensure that floating-point conversions are within range of
new type

Medium

Description
In floating-point value conversions, if the
destination type is smaller than the origin, it must
be verified that the value can fit in the new type.

Threat Medium

Vulnerability Low

Impact Medium

Checks
1

A check must be defined to validate that the value fits in the smaller
destination type.

2 Any errors in the type conversion must be controlled and managed. X

Results

There are no error management controls of the return method
GetUpperBound().

Evidence

%root%\WinGUI\NewGUI\BCMenu.cpp (Lines 2686, 2749)

int numSubMenus = (int)m_SubMenus.GetUpperBound();

Recommendation /

Specific Solution

Recommendation: There must be a control within the code to check the return
method GetUpperBound in order to manage possible errors or exceptions.

Table 8: CBC-VMG-023 findings

CBC-VMG-023 Do not read uninitialised memory Low

Description
Local, automatic variables assume unexpected
values if they are read before they are initialised

Threat Low

Vulnerability Low

Impact Low

Checks 1 Always initialise variables before accessing their content. X

Results
The ‘szTitle’ variable was not initialised before accessing its content.

The ‘m_value’ variable was not initialised before accessing its content.

Evidence

%root%\WinGUI\Util\SendKeys.cpp (Line 585)

TCHAR szTitle[300];
if (::GetWindowText(hwnd, szTitle, sizeof(szTitle)/sizeof(TCHAR)))

bMatch |= (_tcsstr(szTitle, wtitle) != 0);

Recommendation/

Specific Solution
Recommendation: Always initialise variables prior to accessing their content.
In other case it will lead to an unexpected behaviour.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: KeePass Code Review Results Report

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 35 of 43

4.4.3.2. Memory Management

Table 9: CBC-MEM-005 findings

CBC-MEM-005 Allocate sufficient memory for an object Medium

Description

It is necessary to guarantee that storage for
strings has sufficient space available for
character data and consequently allocate
sufficient memory for an object.

Threat Medium

Vulnerability Medium

Impact Medium

Checks

1 The length of string storage arrays must not equal zero.

2
Validate string operations to ensure that they are controlled and
cannot result in an overflow.

X

3
Arguments passed to functions must match the expected format
and size.

Results

The ‘_tcslen’ function is not capable of handling strings that are not \0-
terminated. If such a string is passed without \0-termination, the function will
execute an over-read and potentially cause the application to crash if no further
controls are in-place.

Related CWE: CWE-126.

Evidence

%root%\WinGUI\PwSafe.cpp (Line 496)

if((_tcslen(tszBuf) > 0) && (tszBuf[0] != _T('-'))) return TRUE;

Recommendation /

Specific Solution

Recommendation: The ‘_tcslen’ function is not capable of handling strings

that are not \0-terminated. The code must have controls to ensure that the
string is passed with \0-termination, or add \0 at the end of the string if
necessary.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: KeePass Code Review Results Report

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 36 of 43

4.4.4. Specific C++ Controls

4.4.4.1. Object-Oriented Programming

Table 10: CPP-OOP-001 findings

CPP-OOP-001 Do not invoke virtual functions from constructors or destructors Info

Description

Do not directly or indirectly invoke a virtual function
from a constructor or destructor that attempts to call
into the object under construction or destruction.

Threat Low

Vulnerability Low

Impact Low

Checks 1
Virtual functions are not called within destructors or constructors in
inherited classes. Overrides are either invoked or make use of the
qualified ID.

X

Results

A virtual function is invoked from a constructor within an inherited class.
Attempting to call a derived class function from a base class under construction
is dangerous: the derived class has not had the opportunity to initialise its
resources, which is why calling a virtual function from a constructor does not
result in a call to a function in a more derived class.

Evidences

%root%\WinGUI\Util\ShutdownBlocker.cpp (Line 60)

CShutdownBlocker::~CShutdownBlocker()

Recommendation /

Specific Solution

Specific Solution: Call a nonvirtual, private member function from
constructors, or destructors instead of calling a virtual function

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: KeePass Code Review Results Report

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 37 of 43

4.4.5. Findings controlled programmatically

After the feedback from the community the following issues are controlled within the code. Despite

this situation, these controls are included under this section to keep them in mind for future

development.

During the code review, several findings were identified. After a detailed review and following

information exchange with KeePass point of contact, it was determined that these findings are

controlled within the code. For this reason, the findings were moved to a separate section, as the

risk of using this code is mitigated.

Before deciding to change them, one must take into account the risk of adding more complexity to

the code, and ensure that the mitigation of the risk that is provided via the code is maintained.

4.4.5.1. Error Handling

Table 11: EHI-EHD-002 findings

EHI-EHD-002 Try-catch-finally block Info

Description
For those programming languages that have the
‘try-catch-finally’ structure, each of its section has
to be used correctly.

Threat Low

Vulnerability Low

Impact Low

Checks

1
The ‘finally’ statement should always present, used to release system
resources, and for other clean actions.

X

2
Those operations that can throw exceptions have to be conducted at
the beginning of the ‘try’ section.

3
Generic exceptions will never be used or cached. In case of multiple
exceptions, different ‘catch’ sections will be added.

Results

The ‘finally’ statement should always be present, and used to release system
resources and to perform other clean actions. If any of these additional actions
can throw exceptions, this need to be captured within a new try-catch-finally
block.

This issue is controlled within the KeePass code. However, due to the severity
of the control is still mentioned in here.

Evidence

%root%\WinGUI\Util\SessionNotify.cpp (line 65)

try { m_lpWTSUnRegisterSessionNotification(m_hTarget); }
 catch(...) { ASSERT(FALSE); } // RPC cancelled, exception 0x71A

Recommendation /

Specific Solution

Recommendation: The ‘finally’ statement should always be present, and used
to release system resources and to perform other clean actions. If any of these
additional actions can throw exceptions, this need to be captured within a new
try-catch-finally block.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: KeePass Code Review Results Report

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 38 of 43

4.4.5.2. Specific C controls: Environment

Table 12: CBC-ENV-004 findings

CBC-ENV-004 Do not call system() Medium

Description
The use of ‘system()’ functions can result in
exploitable vulnerabilities, allowing the execution
of arbitrary system commands.

Threat Medium

Vulnerability Medium

Impact Medium

Checks

1
Avoid the use of ‘system()’ functions when passing an unsanitised
or improperly sanitised command string originating from a tainted
source.

X

2
Avoid the use of ‘system()’ functions if a command is specified
without a path name.

X

3
Avoid the use of ‘system()’ functions if a relative path to an
executable is specified and the control over the current working
directory is accessible.

4
Avoid the use of ‘system()’ functions to specify executable
programs.

N/A

5
Check that a command processor is not invoked by ‘system()’
functions.

N/A

Results

shellExecute: This causes a new program to execute and it is difficult to use it
safely.

If the path it is not provided, using ‘system()’ functions to execute a command
could potentially execute the wrong application with the same filename. It is
recommended to use an alternative function that controls this eventuality.

Related CWE: CWE-78.

This issue is controlled within the KeePass code. However, due to the severity
of the control is still mentioned here.

Evidence

%root%\WinGUI\UpdateInfoDlg.cpp (Line 144)

ShellExecute(NULL, NULL, PWM_HOMEPAGE, NULL, NULL,
SW_SHOW);

%root%\WinGUI\PwSafeDlg.cpp

(Lines 627, 6418)
ShellExecute(NULL, NULL, PWM_HOMEPAGE, NULL, NULL,
SW_SHOW);

(Line 635)
ShellExecute(NULL, NULL, PWM_URL_DONATE, NULL, NULL,
SW_SHOW);

(Line 8710)
ShellExecute(m_hWnd, NULL, tszFile.c_str(), NULL, NULL, SW_SHOW);

%root%\WinGUI\NewGUI\XHyperLink.cpp (line 596)

HINSTANCE result = ShellExecute(NULL, verb, url, NULL,NULL,
showcmd);

Recommendation /

Specific Solution

Recommendation: Where more control on what will be executed use
ShellExecuteEx instead of ShellExecute.
ShellExecuteEx provides additional functionality. If you don't require any of the
functionality provided by ShellExecuteEx; keep it simple and stick with
ShellExecute.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: KeePass Code Review Results Report

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 39 of 43

4.4.5.3. Specific C Controls: Miscellaneous

Table 13: CBC-MSC-001 findings

CBC-MSC-001
Do not use the ‘rand()’ function to generate pseudorandom
numbers

Medium

Description

The ‘rand()’ function should not be used to
generate random numbers, as they are
predictable due to the short cycle of numbers that
uses.

Threat Low

Vulnerability Medium

Impact Medium

Checks 1 The ‘rand()’ function is not used. X

Results

rand(): The ‘rand()’ function is no longer safe, as it does not provide enough
entropy to be considered apt for security applications. The use of an alternative
function is recommended, such as ‘random()’. It could be suitable for situations
where weak random numbers are sufficient.

Related CWE: CWE-327.

This issue is controlled within the KeePass code. However, due to the severity
of the control is still mentioned in here.

Evidence

%root%\KeePassLibCpp\SysSpec_Windows\NewRandom.cpp (Line
74,76,78)

ww = (WORD)(rand());

%root%\WinGUI\Util\WinUtil.cpp (Line 954)

const DWORD dwTest = dwOffset + rand();

Recommendation /

Specific Solution

Recommendation: The rand() function does not provide enough entropy. The
usage of other functions such as ‘random()’ is recommended.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: KeePass Code Review Results Report

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 40 of 43

4.4.5.4. Specific C++ Controls: Variable Management

Table 14: CPP-VMG-007 findings

CPP-VMG-007
Guarantee that container indexes/iterators are within a valid
range

Info

Description

It is almost entirely the responsibility of the
programmer to ensure that array references are
within the bounds of the array when using standard
template library vectors.

Threat Low

Vulnerability Low

Impact Low

Checks 1
There are controls in place to ensure that the values used in
indexes or iterator are within the valid range.

X

Results

The ‘pos’ variable, used to access array positions, is manually incremented,
and no range controls are in place to ensure that the value remains valid and
within bounds.

A misuse of this can lead to an improper behaviour, even a program crash.

This issue is controlled within the KeePass code. However, due to the severity
of the control is still mentioned here.

Evidence

%root%\KeePassLibCpp\Details\PwFileImpl.cpp (Lines 294, 299, 305)

p = &pVirtualFile[pos];
..
p += 2; pos += 2;
..
p += 4; pos += 4;

Recommendation /

Specific Solution

Recommendation: Set controls in place to ensure that the values used in
indexes or iterators remain within the valid range. There must be controls in
place to ensure that the values used in indexes or iterators are within the valid
range.

Table 15: CPP-VMG-008 findings

CPP-VMG-008 Guarantee that library functions do not form invalid iterators Info

Description
Copying data into a container that is not large
enough to hold the original data will result in a
buffer overflow.

Threat Low

Vulnerability Low

Impact Low

Checks 1
Code ensures that the destination container can hold all the
elements being copied to it.

X

Results

Memory operations: Memory operations done using memcpy, are used

several times without checking the size of source and destiny.

The function does not verify if the destination container is able to hold the
element to be copied via memcpy(…).

This issue is controlled within the KeePass code. However, due to the
severity of the control is still mentioned here.

Evidences

%root%\WinGUI\AddEntryDlg.cpp (Line 1071)

e.pOriginalEntry = m_pOriginalEntry;
memcpy(e.uuid, m_pOriginalEntry->uuid, 16);

Recommendation /

Specific Solution

Recommendation: Set controls in place to ensure that the destination
container can address the element to be copied without losing integrity in
memcopy() operations

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: KeePass Code Review Results Report

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 41 of 43

4.4.5.5. Specific C++ Controls: Object-Oriented Programming

Table 16: CPP-OOP-007 findings

CPP-OOP-007
Prefer special member functions and overloaded operators to C
Standard Library functions

Info

Description
Several C standard library functions perform byte wise
operations on objects.

Threat Low

Vulnerability Low

Impact Low

Checks

1
Do not use std::memset(…) to initialise an object of nontrivial class type
as it may not properly initialise the value representation of the object.

X

2
Do not use std::memcpy(…) (or related byte wise copy functions) to
initialise a copy of an object of nontrivial class type, as it may not
properly initialise the value representation of the copy.

3
Do not use std::memcmp(…) (or related byte wise comparison functions)
to compare objects of nonstandard-layout class type, as it may not
properly compare the value representations of the objects

Results

The ‘memset(…)’ function should not be used to initialise objects as it may not
properly initialise the value representation of the object.

Improper initialisation leads to class invariants not kept in later uses of the object.

This issue is controlled within the KeePass code. However, due to the severity of
the control is still mentioned here.

Evidence

%root%\WinGUI\NewGUI\BtnST.cpp (Line 503)

SHELLEXECUTEINFO csSEI;

memset(&csSEI, 0, sizeof(csSEI));

%root%\WinGUI\NewGUI\CBMenu.h (Line 71)

memset(this, 0, sizeof(MENUITEMINFO));

Recommendation
/

Specific Solution

Recommendations:

The behaviour of std::memset() can be avoided with other options:

 std::memset may be optimised if the object modified is not accessed

again for the rest of its lifetime.

 Defining an assignment operator that is used instead.

 Replacing the call to this function with a default-initialised copy-and-swap

operation called clear().

Defining an equality operator that is used instead.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: KeePass Code Review Results Report

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 42 of 43

4.4.5.6. Specific C++ Controls: Miscellaneous

Table 17: CPP-MSC-001 findings

CPP-MSC-001
Do not use std::rand() for generating pseudorandom
numbers

Medium

Description
Using std::rand() function could lead to
predictable random numbers.

Threat Low

Vulnerability Medium

Impact Medium

Checks 1 Use strong PRNG algorithms instead of std::rand() function. X

Results

This function is not sufficiently random for security-related functions such as
key and nonce creation.

Related CWE: CWE-327.

This issue is controlled within the KeePass code. However, due to the
severity of the control is still mentioned in here.

Evidence

%root%\WinnGUI\PwSafeDlg.cpp (line 654)

srand((unsigned int)time(NULL));

Recommendation /

Specific Solution

Recommendation: The std::rand() function is not sufficiently random for

security-related functions. Instead it is recommended to implement a code

such as:

std::default_random_engine engine;

engine.seed(n);

std::uniform_int_distribution<> distribution;

auto rand = [&](){ return distribution(engine); }

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 1: KeePass Code Review Results Report

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 43 of 43

5 TECHNICAL CONCLUSIONS

It is important to highlight that KeePass 1.31 is maintained for legacy versions due to the fact that this

version is widely used within the EC.

The most relevant aspect to consider, and the first that stands out, is the nature of the findings.

Considering that the C++ language is based on the C language, it can be determined that most of the

findings are language-specific, instead of common general.

The focus of the code review was, at first, on the core part of KeePass, specifically on the functionality

related to the encryption algorithms. It is a critical section from a security point of view, followed by the

Graphical User Interface (GUI). The GUI is the ‘visible’ part of the application that interacts with the

user, and it usually undergoes security audits via pentesting and vulnerability assessments.

Another interesting aspect to highlight is the programming language used in this code. It is written in

C++, and compiled using Visual Studio, which is a complex language from a security point of view. It

provides a very high level of flexibility and customisation, especially when compared with other

modern languages used for software development. Compilation using Visual Studio entails that the

code takes advantage of the libraries and frameworks provided from this proprietary IDE, such as

MFC 9 in this case.

The fact that the C and C++ languages allow direct access to memory represents a stronger effort to

control errors and exceptions in the code. Furthermore, C++ provides exception management to

handle memory issues.

To conclude, the code review confirmed that the code has a good level from a security point of

view, with only a few findings, none of which were critical or high-risk in nature. It is important to

highlight that these findings cannot be directly considered security flaws that can be exploited, given

that ‘Security’ is a set of layers and, therefore, several risky findings are necessary to compromise the

software.

Nevertheless, the KeePass community has provided a new version amending the controls and

comments within this Technical Report.

