

WP6

DIGIT B1 - EP Pilot Project 645

Deliverable 2: Summary of the Evaluation of Results

KeePass Password Safe

Specific contract n°226 under Framework Contract n° DI/07172 – ABCIII

 October 2016

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 2: Summary of the evaluation of results - KeePass Code Review

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 2 of 29

Author:

Disclaimer

The information and views set out in this publication are those of the author(s) and do not necessarily

reflect the official opinion of the Commission. The content, conclusions and recommendations set out in

this publication are elaborated in the specific context of the EU – FOSSA project.

The Commission does not guarantee the accuracy of the data included in this study. All representations,

warranties, undertakings and guarantees relating to the report are excluded, particularly concerning – but

not limited to – the qualities of the assessed projects and products. Neither the Commission nor any person

acting on the Commission’s behalf may be held responsible for the use that may be made of the

information contained herein.

© European Union, 2016.

Reuse is authorised, without prejudice to the rights of the Commission and of the author(s), provided that

the source of the publication is acknowledged. The reuse policy of the European Commission is

implemented by a Decision of 12 December 2011.

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2011:330:0039:0042:EN:PDF

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 2: Summary of the evaluation of results - KeePass Code Review

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 3 of 29

Report Summary

Title KeePass Password Safe

Project Owner KeePass Community

DIGIT Sponsor EU-FOSSA project

Author DIGIT

Type Public

Version V 0.5 Version date 10/10/2016

Reviewed by EU-FOSSA Team Revision date 08/11/2016

Approved by European Commission - Directorate-
General for Informatics (DIGIT)

Approval date To be
approved

 Nº Pages 29

Distribution list

Name and surname Area Copies

IT contacts To be identified To be
identified

Communities KeePass security Team 1

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 2: Summary of the evaluation of results - KeePass Code Review

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 4 of 29

Contents

CONTENTS... 4

LIST OF TABLES ... 5

LIST OF FIGURES ... 6

ACRONYMS AND ABBREVIATIONS ... 7

1 INTRODUCTION .. 8

1.1. CONTEXT .. 8

1.2. OBJECTIVE .. 8

1.3. SCOPE .. 9

1.4. DELIVERABLES .. 10

2 EXECUTIVE SUMMARY ... 11

3 CODE REVIEW ENVIRONMENT .. 13

4 SECURITY ASSESMENT .. 14

4.1. MEDIUM RISK FINDINGS ... 15

4.2. LOW RISK FINDINGS .. 19

4.3. INFORMATIONAL RISK FINDINGS ... 21

5 RECOMMENDATIONS .. 25

5.1. DETAILS .. 25

5.2. PRIORITISATION ... 29

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 2: Summary of the evaluation of results - KeePass Code Review

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 5 of 29

List of Tables

Table 1: Security Assessment of CBC-VMG-008 .. 15

Table 2: Security Assessment of CBC-MEM-005 .. 15

Table 3: Security Assessment of CBC-ENV-004 ... 16

Table 4: Security Assessment of CBC-MSC-001 ... 17

Table 5: Security Assessment of CPP-MSC-001 ... 18

Table 6: Security Assessment of SCD-FWK-001 ... 19

Table 7: Security Assessment of SCD-VTY-002 .. 19

Table 8: Security Assessment of CBC-VMG-023 .. 20

Table 9: Security Assessment of EHI-EHD-002 ... 21

Table 10: Security Assessment of CPP-VMG-007 ... 22

Table 11: Security Assessment of CPP-OOP-007 ... 23

Table 12: Security Assessment of LOG-CFG-004 ... 23

Table 13: Security Assessment of CPP-VMG-008 ... 24

Table 14: Security Assessment of CPP-OOP-001 ... 24

Table 15: Controls with Findings and Recommendations/Specific Solutions .. 25

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 2: Summary of the evaluation of results - KeePass Code Review

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 6 of 29

List of Figures

Figure 1: Risk Level ... 11

Figure 2: Priority levels ... 29

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 2: Summary of the evaluation of results - KeePass Code Review

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 7 of 29

Acronyms and Abbreviations

AES Advanced Encryption Standard

CWE Common Weakness Enumeration

EU-FOSSA Free and open Source Software Auditing project

FOSS Free and Open Source Software

IDE Integrated Development Environment

WP Work Package

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 2: Summary of the evaluation of results - KeePass Code Review

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 8 of 29

1 INTRODUCTION

1.1. Context

The security of the applications used nowadays has become a major concern for organisations,

companies and citizens in general, as they are becoming a more common part of our daily lives, and

are being used for business and leisure purposes alike. This information has become the most

essential asset to protect, as it includes personal information, internal data, industrial property, etc.

From a security point of view, this new scenario presents many new challenges that need to be

addressed in order to protect the integrity and confidentiality of the data managed by the

applications and their users. Furthermore, their exposure to the Internet has made them a prime

target, due to the value that this private and internal information has.

One of the advantages of Free and Open-Source Software (FOSS) is that its source code is readily

available for review by anyone, and therefore it virtually enables any user to check and provide new

features and fixes, including security ones. Also, from a more professional point of view, it allows

organisations to review the code completely and find the vulnerabilities or weaknesses that it

presents, allowing for a refinement of their security and in turn a safer experience for all the users of

the applications.

1.2. Objective

The objective of this document is to provide, in a summarised format, the results of the code review

ran on the KeePass Password Safe software. This goes with a set of recommendations focused on

increasing the overall security level of the application. This review is carried out within the EU-

FOSSA project, focusing on the security aspects of the software.

The objective of this code review is to examine the KeePass Password Safe software, focusing

mainly on its security aspects, the risk that they pose to its users and the integrity and confidentiality

of the data contained within.

KeePass is a free and open source software tool, which helps to manage passwords in a secure

way. All passwords can be stored in one database, which is locked with one master key or a key file.

Thus it is only necessary to remember one master password or select the key file to unlock the

whole database.

The databases are encrypted using the Advanced Encryption Standard (AES) and Twofish

encryption algorithms.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 2: Summary of the evaluation of results - KeePass Code Review

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 9 of 29

1.3. Scope

The scope of the project is as follows:

Application name KeePass Password Safe Review start 24/08/2016

Code review owner
European Commission - Directorate-General for
Informatics (DIGIT)

Review end 23/09/2016

Objective Security Code Review

Num. Lines 84 622 Version 1.31 Programming language C++

Verification level 1-Oportunistic 2-Standard 3-Advanced

Libraries
 MFC v 9.0 (out of the code review scope, as it is a Microsoft proprietary

code.)

Extensions/plugins N/A

Services required N/A

Result visibility Internal Restricted Public

Critical notification During assessment / final report only
Dominik Reichl

dominik.reichl@t-online.de

Categories

Data/Input
Management

Error Handling /
Information Leakage

 Specific C controls

Authentication
Controls

Software
Communications

Specific C++
controls

Session
Management

 Logging/Auditing
Specific JAVA
controls

X

Authorisation
Management

 Secure Code Design
Specific PHP
controls

X

Cryptography
Optimised Mode
Controls

Comments

The code review of the KeePass Password Safe includes:

1. KeePass v 1.31

Since version 1.21, KeePass has been developed and compiled using Visual
Studio 2008 (with MFC 9.0)

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 2: Summary of the evaluation of results - KeePass Code Review

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 10 of

29

1.4. Deliverables

1 WP6 - Deliverable 1: Code Review Results Report – KeePass Password Safe

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 2: Summary of the evaluation of results - KeePass Code Review

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 11 of

29

2 EXECUTIVE SUMMARY

This document is a high level report of the code review performed for the software KeePass

Password Safe (version 1.31), where the assessment of the findings is explained, as well as the

recommendations to improve the security of the code.

For technical details please see the complete “KeePass Code Review Results Report”1

This code review has been carried out following a manual review process aided by two open-source

review tools:

1. CodeLite: a Free Open-Source Integrated Development Environment (IDE) for C, it is one

of the most used IDE for C and C++, quite easy to install and use.

2. FlawFinder: a Free Open-Source code review tool developed by David A. Wheeler, an

expert in Free and Open Source Software and secure software development. This tool

specialises in finding security flaws in C and C++.

The assessment of the findings pointed out by the code review has been performed form the

attackers’ point of view, where:

 The ‘threat’ is related to the attacker;

 The ‘vulnerability’ is related to the potential issue that may be caused and;

 The ‘impact’ is related to the consequences of the attack being successful.

From a security point of view, KeePass Password Safe can be considered mature. This fact is

corroborated by checking the results:

Figure 1: Risk Level

All of the findings can be solved easily without performing complex developments, and the risk of

them being exploited is either low or not possible without modifying the source code itself.

1 See the EU-FOSSA Community on Joinup: link

0 0

5

3

6

0

2

4

6

8

Critical High Medium Low Info

https://joinup.ec.europa.eu/community/eu-fossa/og_page/project-deliveries
https://joinup.ec.europa.eu/community/eu-fossa/og_page/project-deliveries

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 2: Summary of the evaluation of results - KeePass Code Review

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 12 of

29

Furthermore, these vulnerabilities are hard to exploit. This makes it difficult to take advantage of the

vulnerabilities in normal environments. However, in custom implementations this needs to be

double-checked, as oversights or changes may make these vulnerabilities directly exploitable by

attackers.

It is important to notice that this code review does not guarantee that all of the vulnerabilities are

detected. Some security issues can remain undetected, therefore it is advisable to carry out other

security tests to complement this code review.

As far as the he prioritisation is concerned, it is proposed according to their criticality: medium risk

findings should be resolved in the short-term, low risk findings in the mid-term, and the informative

ones in the long-term.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 2: Summary of the evaluation of results - KeePass Code Review

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 13 of

29

3 CODE REVIEW ENVIRONMENT

In order to carry out the code review and analysis, there was a need to develop a specific code

review environment with the necessary tools (including both automated and manual tools).

For the manual code review, an IDE (Integrated Development Environment) was used:

CodeLite: a FOSS application that is light, user-friendly and has a high maturity

level (version: 9). It is a cross-platform (supporting Windows, the major Linux

distributions and Mac OS). It supports the following languages:

 C

 C++

 JavaScript

 PHP

One of the main reasons why it was chosen: its excellent support of C and

C++ code.

Source: http://www.codelite.org/

Alongside this IDE, an automated tool was also used to help complement the findings and potential

results:

FlawFinder: a FOSS automatic secure code review tool mainly focused on C and

C++ code. It supports Linux and Unix-based operating systems mainly, although

it can also be run on Windows when compiled using Cygwin. It is compatible with

Common Weakness Enumeration (CWE), providing useful feedback on any

finding. As a side note, this tool was developed by David A. Wheeler, an authority

in the fields of secure software development and open-source software.

Source: http://www.dwheeler.com/flawfinder/

http://www.codelite.org/

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 2: Summary of the evaluation of results - KeePass Code Review

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 14 of

29

4 SECURITY ASSESMENT

There were a total of 10 batches with findings in 14 controls. These controls are grouped based on their

overall risk level:

 Medium Risk

o CBC-VMG-008

o CBC-MEM-005

o CBC-MSC-001

o CPP-MSC-001

o CBC-ENV-004

 Low Risk

o SCD-FWK-001

o SCD-VTY-002

o CBC-VMG-023

 Informational Risk

o LOG-CFG-004

o CPP-VMG-008

o CPP-OOP-001

o EHI-EHD-002

o CPP-VMG-007

o CPP-OOP-007

After a detailed review and following information exchange with KeePass point of contact, it was

determined that some of these findings are controlled within the code, so the risk is mitigated and they

do not represent a security vulnerability. However, they are still mentioned here to consider in future

developments. The findings are:

o CBC-MSC-001

o CBC-ENV-004

o CPP-MSC-001

o EHI-EHD-002

o CPP-VMG-007

o CPP-OOP-007

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 2: Summary of the evaluation of results - KeePass Code Review

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 15 of

29

4.1. Medium Risk Findings

Table 1: Security Assessment of CBC-VMG-008

CBC-VMG-008
Ensure that floating-point conversions are within the range of the
new type

Medium

Finding
In floating-point value conversions, if the destination
type is smaller than the origin, it must be verified that
the value can fit in the new type.

Threat Medium

Vulnerability Low

Impact Medium

Detections
File/s: Line/s:

%root%\WinGUI\NewGUI\BCMenu.cpp 2686, 2749

Assessment

There are no error management controls of the return method GetUpperBound().Any
errors in the type conversion must be controlled and managed. Thus the possible error
or exceptions that this function can trigger must be controlled.

 Threat (Medium): to exploit this functionality, it is necessary to have access to

the code.

 Vulnerability (Low): it is hard to find this vulnerability and to exploit it as well. It
is also not publicly known.

 Impact (Medium): it can only affect local computers. The result of its occurrence
is a loss of data integrity and precision.

Related vulnerability code: N/A.

Table 2: Security Assessment of CBC-MEM-005

CBC-MEM-005 Allocate sufficient memory for an object Medium

Finding
It is necessary to guarantee that storage for strings has
sufficient space available for character data and
consequently to allocate sufficient memory for an object.

Threat Medium

Vulnerability Medium

Impact Medium

Detections
File/s: Line/s:

%root%\WinGUI\PwSafe.cpp 496

Assessment

The ‘_tcslen’ function is not capable of handling strings that are not \0-terminated. If
such a string is passed without \0-termination, the function will execute an over-read
and potentially cause the application to crash if no further controls are in-place.

 Threat (Medium): to exploit this functionality, it is necessary to have access to
the code. On the other hand, this finding can be detected using automatic tools.

 Vulnerability (Medium): these functions do not have any control or filtering
functionality to check the parameter received. So it can receive a non \0-
terminated string.

 Impact (Medium): it can only affect local computers.

Related vulnerability code: CWE-126.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 2: Summary of the evaluation of results - KeePass Code Review

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 16 of

29

Table 3: Security Assessment of CBC-ENV-004

CBC-ENV-004 Do not call system() function Medium

Finding
The use of ‘system()’ functions can result in exploitable
vulnerabilities, allowing the execution of arbitrary
system commands.

Threat Medium

Vulnerability Medium

Impact Medium

Detections

File/s: Line/s:

%root%\WinGUI\UpdateInfoDlg.cpp 144

%root%\WinnGUI\PwSafeDlg.cpp
627, 635, 6418,
8710

%root%\WinGUI\NewGUI\XHyperLink.cpp 596

Assessment

shellExecute: This causes a new program to execute and it is difficult to use safely.

If the path it is not provided, the use of ‘system()’ functions to execute a command
could potentially execute the wrong application with the same filename. It is
recommended to use an alternative function that controls this eventuality.

 Threat (Medium): to exploit this functionality, it is necessary to have access
to the code. On the other hand, this finding can be detected using automatic
tools.

 Vulnerability (Medium): these functions do not have any control or filtering

functionality, thus being able of potentially executing any command passed
through them.

 Impact (Medium): it can only affect local computers, therefore remote
programs cannot be accessed unless previously downloaded.

Related vulnerability code: CWE-78.

This issue is controlled programmatically within the KeePass code. The issue in this
case does not affect the security of the code because is not related to the main
functionality of the software (encryption).

However is still mentioned to create awareness about it.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 2: Summary of the evaluation of results - KeePass Code Review

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 17 of

29

Table 4: Security Assessment of CBC-MSC-001

CBC-MSC-001 Do not use the rand() function to generate pseudorandom numbers Medium

Finding
The rand() function should not be used to generate
random numbers, as they are predictable due to the
short cycle of numbers that it uses.

Threat Low

Vulnerability Medium

Impact Medium

Detections

File/s: Line/s:

%root%\KeePassLibCpp\SysSpec_Windows\NewRandom.cpp 74,76,78

%root%\WinGUI\Util\WinUtil.cpp 954

Assessment

rand(): the ‘rand()’ function is no longer safe, as it does not provide enough entropy to
be considered apt for security applications. The use of an alternative function is
recommended, such as ‘random()’.

 Threat (Low): to exploit this functionality, it is necessary to have access to the

code. Furthermore the attacker should have advanced coding and networks
skills. On the other hand, this finding can be detected using automatic tools.

 Vulnerability (Medium): the weak entropy of the rand() function leads to
predictable random numbers

 Impact (Medium): it is easier to guess the random number when using this
function instead of other similar.

Related vulnerability code: CWE-327.

This issue is controlled programmatically within the KeePass code. The issue in this
case does not affect the security of the code because is not related to the main
functionality of the software (encryption).
However is still mentioned to create awareness about this function. The usage of
rand() must be ceased in future developments.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 2: Summary of the evaluation of results - KeePass Code Review

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 18 of

29

Table 5: Security Assessment of CPP-MSC-001

CPP-MSC-001 Do not use std::rand() to generate pseudorandom numbers Medium

Finding
Using the std::rand() function could lead to predictable
random numbers.

Threat Low

Vulnerability Medium

Impact Medium

Detections
File/s: Line/s:

%root%\WinnGUI\PwSafeDlg.cpp 654

Assessment

This function is not sufficiently random for security-related functions such as key and
nonce creation.

 Threat (Low): to exploit this functionality, it is necessary to have access to the
code. Furthermore the attacker should have advanced coding and networks
skills. On the other hand, this finding can be detected using automatic tools.

 Vulnerability (Medium): the weak entropy of the std::rand() function leads to

predictable random numbers

 Impact (Medium): it is easier to guess the random number when using this
function instead of another similar one.

Related vulnerability code: CWE-76.

This issue is controlled programmatically within the KeePass code. The issue in this
case does not affect the security of the code because is not related to the main
functionality of the software (encryption). However is still mentioned to create
awareness about it.
However is still mentioned to create awareness about this function and still mentioned
in here. The usage of std::rand() must be ceased in future developments.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 2: Summary of the evaluation of results - KeePass Code Review

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 19 of

29

4.2. Low Risk Findings

Table 6: Security Assessment of SCD-FWK-001

SCD-FWK-001 All frameworks and third party components are up-to-date Low

Finding
RegCreateKey: this function is provided only for

compatibility with 16-bit versions of Windows.
Applications should use the RegCreateKeyEx function.

Threat Medium

Vulnerability High

Impact Low

Detections
File/s: Line/s:

%root%\WinGUI\PwSafe.cpp 328

Assessment

The use of obsolete functions is discouraged unless strictly necessary due to legacy
concerns. These functions are known and easily discoverable using automated tools.

 Threat (Medium): it is publicly known and detectable, but it can only be indirectly
exploited.

 Vulnerability (High): deprecated functions usually have well-known flaws that
can be exploited.

 Impact (Low): it only affects a limited part of the application.

Related vulnerability code: CWE-676.

Table 7: Security Assessment of SCD-VTY-002

SCD-VTY-002 On division operations, check that the divisor does not equal zero Low

Finding
The size of the ‘lpstrText’ variable is not controlled against
invalid or zero values.

Threat Low

Vulnerability Low

Impact Medium

Detections
File/s: Line/s:

%root%\WinGUI\NewGUI\BCMenu.cpp 1011

Assessment

In division operations, the values must be checked to ensure that no invalid values are
operated and that no value is divided by zero.

 Threat (Low): the attacker needs access to the code and specific skills to

exploit this vulnerability.

 Vulnerability (Low): it is hard to find and to exploit this vulnerability, but it is a
wrong coding practice.

 Impact (Low): it only affects in the cases that the lpstrText function returns a
0 value.

Related vulnerability code: N/A.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 2: Summary of the evaluation of results - KeePass Code Review

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 20 of

29

Table 8: Security Assessment of CBC-VMG-023

CBC-VMG-023 Do not read uninitialised memory Low

Finding

The ‘szTitle’ variable is not initialised before accessing its
content.

The ‘m_value’ variable is not initialised before accessing
its content.

Threat Low

Vulnerability Low

Impact Low

Detections
File/s: Line/s:

%root%\WinGUI\Util\SendKeys.cpp 585

Assessment

Local, automatic variables assume unexpected values if they are read before they are
initialised.

 Threat (Low): the attacker needs to have access to specific resources and
must have advanced computer skills to exploit this flaw.

 Vulnerability (Low): it is hard to discover and to exploit.

 Impact (Low): can lead to unexpected behaviour when accessing the
unexpected values of a non-initialised variables.

Related vulnerability code: N/A.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 2: Summary of the evaluation of results - KeePass Code Review

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 21 of

29

4.3. Informational Risk Findings

Table 9: Security Assessment of EHI-EHD-002

EHI-EHD-002 Try-catch-finally block Info

Finding

The ‘finally’ statement should always be present, and
used to release system resources and perform other
clean actions. If any of these additional actions within the
finally block can throw exceptions, these need to be
captured within a new try-catch-finally block.

Threat Low

Vulnerability Low

Impact Low

Detections
File/s: Line/s:

%root%\WinGUI\Util\SessionNotify. 65

Assessment

Those programming languages that have the ‘try-catch-finally’ structure have to be
used correctly. The ‘finally’ statement should always be present, and used to release
system resources and perform other clean actions.

 Threat (Low): users cannot directly take advantage of this vulnerability.

 Vulnerability (Low): risk of memory exhaustion or of leaving a component in an
undefined state.

 Impact (Low): can cause an application to freeze or even crash.

Related vulnerability code: N/A.

This issue is controlled programmatically within the KeePass code. The issue in this
case does not affect the security of the code because is not related to the main
functionality of the software (encryption).

 However is still mentioned to create awareness about it.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 2: Summary of the evaluation of results - KeePass Code Review

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 22 of

29

Table 10: Security Assessment of CPP-VMG-007

CPP-VMG-007 Guarantee that container indexes/iterators are within a valid range Info

Finding

The ‘pos’ variable, used to access array positions, is
manually incremented, and no range controls are in-
place to ensure that the value remains valid and within
bounds.

A misuse of this variable can lead to an improper
behaviour, even a program crash.

Threat Low

Vulnerability Low

Impact Low

Detections
File/s: Line/s:

%root%\KeePassLibCpp\Details\PwFileImpl.cpp 294, 299, 305

Assessment

Ensuring that array references are within the bounds of the array is almost entirely the
responsibility of the programmer when using standard template library vectors.

 Threat (Low): the index used to go through the array is not commonly
obtained from direct user input.

 Vulnerability (Low): the lack of length control can be exploited to cause a

lack of memory or even a crash of the application.

 Impact (Low): it would only affect a section of the code and it would be
complex for it to cause severe damages.

Related vulnerability code: N/A.

This issue is controlled programmatically within the KeePass code. The issue in this
case does not affect the security of the code because is not related to the main
functionality of the software (encryption).

However is still mentioned to create awareness about it.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 2: Summary of the evaluation of results - KeePass Code Review

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 23 of

29

Table 11: Security Assessment of CPP-OOP-007

CPP-OOP-007
Prefer special member functions and overloaded operators to C
Standard Library functions

Info

Finding

The ‘memset(…)’ function should not be used to

initialise objects, as it may not properly initialise the
value representation of the object.

Improper initialisation leads to class invariants that do
not apply in later uses of the object.

Threat Low

Vulnerability Low

Impact Medium

Detections

File/s: Line/s:

%root%\WinGUI\NewGUI\BtnST.cpp 503

%root%\WinGUI\NewGUI\CBMenu.h 71

Assessment

Several C standard library functions perform byte wise operations on objects.

 Threat (Low): the attacker needs special access or specific resources and

must have advanced coding skills to exploit this flaw.

 Vulnerability (Low): it is hard to find and to exploit this vulnerability.

 Impact (Medium): the improper initialisation leads to class invariants that do

not apply in later uses of the object. It can lead to an application malfunction.

Related vulnerability code: N/A.

This issue is controlled programmatically within the KeePass code. The issue in this
case does not affect the security of the code because is not related to the main
functionality of the software (encryption).

However is still mentioned to create awareness about it.

Table 12: Security Assessment of LOG-CFG-004

LOG-CFG-004 Logging exceptions Info

Finding

There is no logging functionality implemented in the
catch(…) block; therefore any exception captured is not
logged, nor is any trace left of this event recorded

Threat Low

Vulnerability Low

Impact Low

Detections
File/s: Line/s:

%root%\KeePassLibCpp\Details\PWFindImpl.cpp From 51 to 60

Assessment

Exceptions must be logged in a proper manner in case they are not to be thrown.

 Threat (Low): users cannot directly take advantage of this vulnerability.

 Vulnerability (Low): it is hard to discover and its exploitation is theoretical

 Impact (Low): its exploitation does not directly damage the system.

Related vulnerability code: N/A.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 2: Summary of the evaluation of results - KeePass Code Review

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 24 of

29

Table 13: Security Assessment of CPP-VMG-008

CPP-VMG-008 Guarantee that library functions do not form invalid iterators Info

Finding

Memory operations: Memory operations done using
memcpy, are used several times without checking the
size of the source and destination.

The function does not verify if the destination container is
able to hold the element to be copied via memcpy(…).

Threat Low

Vulnerability Medium

Impact Low

Detections
File/s: Line/s:

%root%\WinGUI\AddEntryDlg.cpp 1071

Assessment

Copying data into a container that is not large enough to hold the original data will
result in a buffer overflow.

 Threat (Low): the code would need to be modified directly in order to exploit
this vulnerability, although it is discoverable with automated tools

 Vulnerability (Medium): this vulnerability entails the known risk of losing the
integrity of the memory locations being managed within the function (or those
accessed by it).

 Impact (Low): it is complex to exploit this vulnerability, but the lack of a size

control for arrays in the code can result in an overflow.

Related vulnerability code: N/A.

Table 14: Security Assessment of CPP-OOP-001

CPP-OOP-001 Do not invoke virtual functions from constructors or destructors Info

Finding
CShutdownBlocker is declared as a virtual function in
the header file.

Threat Low

Vulnerability Low

Impact Low

Detections
File/s: Line/s:

%root%\WinGUI\Util\ShutdownBlocker.cpp 60

Assessment

A virtual function is invoked from a constructor within an inherited class.

Attempting to call a derived-class function from a base class under construction is
dangerous: th

e derived class has not had the opportunity to initialise its resources, which is why
calling a virtual function from a constructor does not result in a call to a function in a
more derived class.

 Threat (Low): it needs special access and skills to get to the vulnerability

 Vulnerability (Low): it is hidden and hard to exploit.

 Impact (Low): it can lead to an unexpected behaviour.

Related vulnerability code: N/A.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 2: Summary of the evaluation of results - KeePass Code Review

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 25 of

29

5 RECOMMENDATIONS

5.1. Details

The code review has evaluated the security level of the application analysed and identified

vulnerabilities and weaknesses that can put it at risk.

 In this section, for each finding a corresponding recommendations is given to help increase the

overall security level of the application.

Table 15 shows the recommendations that should be implemented for each of the findings described

and assessed in Section 4.

Table 15: Controls with Findings and Recommendations/Specific Solutions

Controls with Findings Recommendation/Specific Solution

CBC-VMG-008

R01_CBC-VMG-008

Recommendation: There must be a control within the code to check

the return method GetUpperBound in order to manage possible

errors or exceptions.

CBC-MEM-005

R02_CBC-MEM-005

The ‘_tcslen’ function is not capable of handling strings that are not

\0-terminated. The code must have controls to ensure that the string

is passed with \0-termination, or add \0 at the end of the string if

necessary..

CBC-ENV-004 R03_CBC-ENV-004

This issue is controlled programmatically within the KeePass code.

Before deciding to change it, one must take into account the risk of

adding more complexity to the code, and ensure that the mitigation of

the risk that is provided via the code is maintained.

Where more control is required on what will be executed use
ShellExecuteEx instead of ShellExecute.

ShellExecuteEx provides additional functionality. If you don't require

any of the functionality provided by ShellExecuteEx; keep it simple

and stick with ShellExecute.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 2: Summary of the evaluation of results - KeePass Code Review

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 26 of

29

Controls with Findings Recommendation/Specific Solution

CBC-MSC-001
R04_CBC-MSC-001

This issue is controlled programmatically within the KeePass code.

The issue in this case does not affect the security of the code

because is not related to the main functionality of the software

(encryption).

However is still mentioned to create awareness about this function

and as an informational issue.

The usage of rand() must be ceased in future developments.

Before deciding to change it, one must take into account the risk of

adding more complexity to the code, and ensure that the mitigation of

the risk that is provided via the code is maintained.

Recommendation: The rand() function does not provide enough

entropy. The usage of other functions such as ‘random()’ is

recommended.

CPP-MSC-001

R05_CPP-MSC-001

This issue is controlled programmatically within the KeePass code.

The issue in this case does not affect at all the security of the code

because is not related to the crucial functionality of the software

(encryption).

However is still mentioned to create awareness about this function

and as an informational issue.

The usage of std::rand() must be ceased in future developments.

Before deciding to change it, one must take into account the risk of

adding more complexity to the code, and ensure that the mitigation of

the risk that is provided via the code is maintained.

Recommendation: The std::rand() function is not sufficiently

random for security-related functions. Instead it is recommended to

implement a code such as:

std::default_random_engine engine;

engine.seed(n);

std::uniform_int_distribution<> distribution;

auto rand = [&](){ return distribution(engine); }

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 2: Summary of the evaluation of results - KeePass Code Review

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 27 of

29

Controls with Findings Recommendation/Specific Solution

EHI-EHD-002

R06_EHI-EHD-002

This issue is controlled programmatically within the KeePass code.

Before deciding to change it, one must take into account the risk of

adding more complexity to the code, and ensure that the mitigation of

the risk that is provided via the code is maintained.

Recommendation: The ‘finally’ statement should always be present,

and used to release system resources and to perform other clean

actions. If any of these additional actions can throw exceptions, these

need to be captured within a new try-catch-finally block.

SCD-FWK-001 R07_SCD-FWK-001

Specific Solution:

The usage of deprecated functions is discouraged.

o RegCreateKey: this function is provided only for

compatibility with 16-bit versions of Windows. Applications

should use the RegCreateKeyEx function.

SCD-VTY-002 R08_SCD-VTY-002

Recommendation: Check the ‘lpstrText’ variable to ensure that no

invalid or zero values are received.

CBC-VMG-023 R09_CBC-VMG-023

Recommendation: Always initialise variables prior to accessing their

content. In other case it will lead to an unexpected behaviour.

CPP-VMG-007 R10_CPP-VMG-007

This issue is controlled programmatically within the KeePass code.

Before deciding to change it, one must take into account the risk of

adding more complexity to the code, and ensure that the mitigation of

the risk that is provided via the code is maintained.

Recommendation: Set controls in place to ensure that the values

used in indexes or iterators remain within the valid range. There must

be controls in place to ensure that the values used in indexes or

iterators are within the valid range.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 2: Summary of the evaluation of results - KeePass Code Review

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 28 of

29

Controls with Findings Recommendation/Specific Solution

CPP-OOP-007 R11_CPP-OOP-007

This issue is controlled programmatically within the KeePass code.

Before deciding to change it, one must take into account the risk of

adding more complexity to the code, and ensure that the mitigation of

the risk that is provided via the code is maintained.

Recommendations:

The behaviour of std::memset() can be avoided with other options:

 std::memset may be optimised if the object modified is not

accessed again for the rest of its lifetime.

 Defining an assignment operator that is used instead.

 Replacing the call to this function with a default-initialised

copy-and-swap operation called clear().

 Defining an equality operator that is used instead.

LOG-CFG-004 R12_LOG-CFG-004

Recommendation: Log any exception captured that will not be

thrown to have a record of the event.

CPP-VMG-008 R13_CPP-VMG-008

Recommendation: Set controls in place to ensure that the

destination container can address the element to be copied without

losing integrity in memcopy() operations

CPP-OOP-001 R14_CPP-OOP-001

Specific Solution: Call a nonvirtual, private member function from

constructors, or destructors instead of calling a virtual function

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 2: Summary of the evaluation of results - KeePass Code Review

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 29 of

29

5.2. Prioritisation

Once the severity of the findings found during the code review has been determined, the following

step in the methodology includes a prioritisation process and an action plan definition. This allows

the stakeholders and project owners to identify the most urgent findings that need to be solved,

allowing the planning of the fixes as part of the standard development cycle.

For this purpose, the following priority sets have been established. The main consideration is to

solve the Medium findings identified during this code review in the short-term. The low findings

should be targeted in the mid-term, and finally the Informative findings do not require any priority.

Thus, the following graph has been generated:

Figure 2: Priority levels

Short-term

•CBC-VMG-008

•CBC-MEM-005

•CBC-ENV-004

•CBC-MSC-001

•CPP-MSC-001

Mid-term

•SCD-FWK-001

•SCD-VTY-002

•CBC-VMG-023

Long-term

•EHI-EHD-002

•LOG-CFG-004

•CPP-VMG-007

•CPP-VMG-008

•CPP-OOP-001

•CPP-OOP-007

