* X &
* *
* *

* 4k

European
Commission

The European Commission’s
Open Source Software and Tools
Inventory Methodology

Version 3.0
(Revised Nov 2021)

Study Authors

This document is a one of the deliverables of a European Commission consulting assignment carried
out in 2021 by Trasys Consulting, part of the NRB Group.

Contract: Specific Contract n°479 under Framework Contract n® DI/07624 - ABCIV Lot 3
Request: Funded by ISA2 2020 Sharing and Re-Use Action (2016.31) for DG DIGIT B.3

European Commission

The study was managed by Saranjit Arora (external PM & member of OSPQO) and Miguel Diez-Blanco
(Commission PM & OSPO Lead) from DIGIT B.3.002. It was reviewed by Gijs Hillenius (OSPO),
Evangelos Tsavalopoulos (Head of Sector) and others within DIGIT B.3.

Disclaimer

The information and views set out in this publication are those of the author(s) and do not necessarily
reflect the official opinion of the Commission. The Commission does not guarantee the accuracy of
the data included in this document. Neither the Commission nor any person acting on the
Commission’s behalf may be held responsible for the use which may be made of the information
contained therein.

More information on the European Union is available on the Internet (http://www.europa.eu).

© European Union, 2021-2022

()

The Commission's reuse policy is implemented by Commission Decision 2011/833/EU of 12
December 2011 on the reuse of Commission documents.

Unless otherwise noted (e.g. in individual copyright notices), the reuse of the editorial content on
this website owned by the EU is authorized under the Creative Commons Attribution 4.0
International (CC BY 4.0) licence. This means that reuse is allowed, provided appropriate credit is
given and any changes are indicated.

You may be required to clear additional rights if a specific content depicts identifiable private
individuals or includes third-party works. To use or reproduce content that is not owned by the EU,
you may need to seek permission directly from the respective right holders. Software or documents
covered by industrial property rights, such as patents, trademarks, registered designs, logos and
names, are excluded from the Commission's reuse policy and are not licensed to you.

EUROPEAN COMMISSION

Directorate-General for Informatics
Directorate DIGIT
Unit B3 — DIGIT.B3 Reusable Solutions

E-mail: DIGIT-OSPO@ec.europa.eu

http://www.trasysinternational.com/
https://www.nrb.be/
http://www.europa.eu/
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32011D0833
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32011D0833
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:DIGIT-OSPO@ec.europa.eu

The European Commission’s Open Source Software and Tools Inventory Methodology

TABLE OF CONTENTS

TABLE OF FIGURES.

1. DELIVERABLE OVERVIEW

It R o oo [T} 1o o TP
2. BACKGROUND

S R @ T 011 o I Yo 10 o =TSP SRR PRRTPRRPPRN
2.2. Inception and evolution of theinventory methodology........ccccvvueereceneceeesceree e
2.3. Developing the MethOdOlOZYcoviiriiririeriee ettt sttt ettt et be e eaes

3. METHODOLOGY

3.1, WY CrEat@an iNVENTONYcciiiteieieetetete ettt s e e s e et et e e e e esaessess et e sestensensesessensensansennens
3.2. The methodolOgY @t @ SlaNCe. ...t e e se e e e e e e e s e bebesbebessesesessensans
3.3, Step 1:1dentifying DAta SOUICES.......cccvueiriririeieeririeterestsietese sttt sttt st ebe et st se et sbese et et esesesbebeneesbebananennes
R B T o A A Yolo LU <o - - [OOSR
3.5. Step 3: Consolidateand 10adinto @ database......ccccceieereeeeircisiceee e e
3.5.1. DAta IMIOMEL.......c.ooeiei ettt
3.5.2. StEPStO l0AdING data.........cooviiiieieicce e et b et et et et et et et entesaeetes
3.6. Step 4:Analyse, clean and enrich the data ..ot
3.7. Assessment Criteria defiNitioN ...ttt ens
3.8. Step 5: Apply thebusiness criticality and vulnerability Criteria.......ooeevecerecereceescree e
3.9. Step 6: Apply software sustaiNability Criteria......ccoeeiiiiiieiecceecee e
3.10. Step 7: Produce fiNal reSUITS /rEPOITS ...vcueveriereiereeeteeetec ettt ettt sttt se s ebe s se b e e ebe s ebeaebensensebenseressenes
3.11. Summary and conclusion on the Inventory Methodology and sample reports..........ccceeeeerrenerenienenenene,
3.11.1.Softwareinventory procedure from the Inventory Manager’s perspective.......ccoevecvecreceeveeceesesesesennens
I =Y 4 = =" Yo OO

4. RECOMMENDATIONS, GOOD PRACTICES AND NEXT STEPS

4.1, RECOMMENUAT ONS ..cveuireiiriiieiiteertetre sttt et sttt st e e st et b sa e st sae e s b et sbe st s b et e e s b et ese st ese b eseebentesentesessanessensons
B C o Yo Yo I o= Lot 1] o =3 T U U O U U USSR
4.3, The target SCENAIO — fIrSt STEP ittt ettt sttt s b e bbbt e et e ee

ANNEX 1: AVAILABLE INFORMATION SOURCES FOR EUROPEAN COMMISSION

Data COlleCtON Nigh |EVEl SCOPE..cuiiiieieeeceee et e e ae e st et et e te st e testententetenes
[0 T = 1 e g LTSS TSSO UOU PP PRRRPRIN
F el D | = 1ol = o} { OO TSP TU PP TRPPPTRI
Y Yoo [Tor= 1 o TR
N o (=T 1 0 oy TR

F R D} r=Tol = o = OSSPSR P SR
N o (=T 1 0 o (TR
A2 - OPErAtING SYSTEIMS ...ttt ettt et s b s b s b s b s b e s b e s b e s b e st et et et et et et et et et et esbesbenbensanee
T 1V T L [V TSR

Page 3 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

Y Yo [otz 1 o OSSR 42
B - DESKLOP ceureueeueeieiietetete et e te st e s te st e st e s besbe st et et e beebesbeebeebeebeebeebeebe e b e ebe e Rt easertenseateRse Rt ensenseRten b et et et e benbebebententetentn 42
BL - INTTaSTIUCTUN.....veeeeeeteeeetecetete ettt ettt ettt a e e st s s e e ae s bese et e e e b e esessesessesessesestessesensesestenessensesesesestaneas 42
B2 —Operating System & B3 — LOCAl APPlICAIONS....ccevireriiiirecestese ettt et ettt et e bestentesrene 43
B4 — VIrtual APPIICATIONS ...cueeveeieeieceieteeeteee e te et te ettt te e s be s s e e sesaesesteseene st ese et eseesensesessaseseneesessanessaneas 43
C - MIODIT € ABVICES ...ttt ettt bbbttt sb et s b et s b s b et s b et e ae st e st e st sbentese s et ebe st esesbenesbeneees 44
L T V1 R 44
Summary of coverage and readiness of theinformation SOUICESccceeeereeeieceeesereee e e 45
ANNEX 2 : METRICS SUSTAINABILITY CRITERIA 46
N T3 oY L8 Tt 1o o J T 46
1.1. Objective of this Documentand Intended AU ENCE.........coeeeeeiieeineiieeee et 46
1.2, DOCUMENT STUCTUI...c.ueiiieieiieeteceee ettt sttt st e st e be s s bt e eesae e s st e sesaeesseesesaeeestesaeeseensesneensesnsenneenneensenas 46
1.3, KEY SUCCESS FACTONS ...ttt sttt ettt et ettt st st e e e e b e e et e b et et et e e e sbesneee 46
R B T Y= 1 o =SOSR 46
B1 Metrics to Analyse the Sustainability Of FOSS Projects........ccceveviienininiscieteieteee ettt sttt 47
1.5. Identification and Analysis of the Complete Set of Aspects that Can Affect the Sustainability of the FOSS

PO BCTS.ueiteeeterteetectestetereeteseereeteseesteetesaeesheesb e et st b e et s bt e be et e b e s a e e a e et e s Rt e bt e te s Rt et e sbe e beeatenbe e tesarenrean 47
1. COMMUNITY ACTVITY . titeteiteietestete ettt st st st e ae st s st s st s be s st et et et et et e s entensensensessassans 47
2. T (oY o007 o o <O 48
3. QUATTEY AN SECUMITY .c.veuiiuiieiiieerie ettt sttt sttt a e s bt e st e s b et et et ese st esensenesreneen 48
4, DEMOZIAPIICS AN DIVEISITY...cvccverereieieiteiteeese et e e s e testesbesbesreesseseeseeseessessessessessessesensensensensensensenes 48
5. GOVEINANCE .. c.uietirutenteeeteete st esteeste et e st este e te st e beestesssesatesbeesesaeesbeeasesat e beesseeasesste st et esatenseansesatesatesbeenbesasensenn 49
6. (O R I U] o] oo o RSP PRPR 49
1.6, DeSign Of @ SELOT MELIICS....ciiieeieerteer ettt s e se e e et e se s et ese s esessenassenaesestenens 49
R B T T [l AV 1= o o O = o T TR SRORPPRN 51
25 0 S @0 T o1 0 10T a T A Y A, OSSR 52
2.3.30 QUAlITY AN SECUNTY..cviuiriiirieieietetrte ettt sttt s b et b et bbb st b e st e ae b e et et et et ebe e enesbens 63
2.3.4. DemMOGraphics aNd DiVErSiTY.....ccciceiierierieiieiterierte sttt s e e e e e e e e e e e e e e e s e s e s e se s et esessensensensn 67
C1 Metrics MeasuremMeNnt aPPrOACKH ..ottt ettt et ettt st ettt ettt e et e ee 77
3.1 TOO! t0 MEASUIE the MELIICS ..uveveeeeiieereeee ettt e e e e st et e e es e s eese st ene st e e esaneenas 77
3.2. Frequency of the MEASUINEMENT..........cciiiee ettt ettt e e s s aeae st esesbeneens 78
3.3. Responsible for the MEASUreMENTt........cc.cciieieceeeees ettt bt nes 78
3.4, RESUITS «..vevevesteees e et et ettt e e et e et e e st e e te st e se s be e e s e saese st ese st ese et esees e sessesestesesseseseneesensesasseseesensesesenessesenteneans 78
ANNEX 3: DETAILED DESCRIPTION OF TARGET DATA MODEL....cvevieteieteerteesteteee et es e eese st ne e seens 83
APPENDIX: ABBREVIATIONS AND ACRONYMSocoiiiirietirieinieesieeeesteesieesseessesessessesessessesessesessessesensesensesensensesensens 87

Page 4 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

TABLE OF FIGURES

Figure 1: Evolution of inventory process from pilot to the optimal methodology (targetscenario)ccccuevneee. 9
Figure 2: Methodol0gy OVErvieW diaBramcc.cciviiierieienieireriee ettt ettt et et ettt be st st sbe st b sbenesbeneas 12
Figure 3: Phase 1 - ACQUITTINE DATa.....cccicieeieeeeieieteeees et te et e te e e s e e te e s e e e se s esessesa et e tese s esessenessensnsensanens 13
Figure 4:Phase2 - Data Management Data MOEcoeceeeeeeeieneeieeeeetetetete ettt ettt rere e 15
Figure 5:Phase 3 - Criteria and Inventory Creation Data MOdElccoeviviiinininecsieeeeeee e 18
Figure 6: Example of Contributing ACtVity MELIIC ...ccvevviieeeiecesees et ees 22
Figure 7: ACtiVity MELHC fOr KEEFOX ...cuiiuiiiiiieiiesieciesteseste ettt st e e e e e s e e s e e e e e s ene et e se st et ensensantensenes 23
Figure 8: Procedure from Inventory Manager's PerSPECHIVE.......ccvecerertrinieinienteerteesteeste e siest et st saesesaesessenens 24
Figure 9: Grouping Of SOfTWArE REPOI......cciiieiieieeerteserer ettt re e e e s e e e s esa e s e s e s essesbesbesbessesentensenes 25
Figure 10: Software by System tyPe REPOIT.....ccciviiiiiireiecese ettt ettt a et e e b e e e b et e sresbestestene 26
Figure 11: Criticality RANKING REPOIT.....c.couiiieieieieietee ettt ettt et ettt et ettt et sb e st b b nesbe e 27
Figure 12: Software by SOftWare TYPE REPOI......c.ciiieirieerieeseree s e eset et e et e et e e e se s se st e sesse e sesaennssanens 28
Figure 13: Software Dependenci €S REPOITceiiviiiiirireseseceree st ettt et s et e e e b e s e s et e stesbestestenes 28
Figure 14: Critical Shortlist Rating Report (Assessment of top items in the inventoried software against the

criticality mechanism defined in the EU-FOSSA PIlOt Project)....c.ccccceeererieeenerieeeninieeninieieesenesieseseneees 29
Figure 15: Target Data MOUEl DIQgram......ccccucceerereeiiererieeseresesee e ste e teesee e se s e e sse e e e sse e ssesessessanessenessessnsessenens 33
Figure 16: Proposed high level t0-be approach......... ittt ettt 33
Figure 17:Information sources (EUropean CoOMMISSION)ccceeveerrererreresreneeseeseeesessesesseessesesessesessessesensesessessssenees 37
Figure 18: High-level approach to manage limitations (European CommisSioN).......cccceeeeuereeereeerieeseseeeseeresseens 39
Figure 19: Outline Of DIGI T-OperatiNg SYSTEMS....c.ccivviveriirisese e seeeeee e e e seere e e e e e et e sse s e s e s ensessensessesensessessenes 40
Figure 20: Coverage of inventory with information sources (European CommisSioN).........eeuererererrererererreneresnenens 45
Figure 21: Readiness of theinformationsources (European COMMISSION)......ccccveeveererieesreesiesiereseressesessessesessenens 45

Page 5 of 87

file:///C:/Users/User/Desktop/02.Trasys/03.OSSEPS%20Project/Raptakis%20Deliverables/SC479_D02.03%20Updated%20inventory%20methodology_v6.04.docx%23_Toc86315213

The European Commission’s Open Source Software and Tools Inventory Methodology

1. DELIVERABLE OVERVIEW

1.1. Introduction

The European Commission has builtand updated theirinventory of open source software and
tools they use, onthree occasions. The first wasin 2016, as part of the EU-FOSSA Pilot project,
the secondin 2019 with EU-FOSSA 2, and the thirdin 2021 as part of this assignment.

With each inventory iteration, the inventory methodology has been refined, including from
its use in 2020, whenit was usedfor the European Council.

Given its potential for wider use, DG DIGIT decided it was worth creating a generic
methodology for building and maintaining an inventory of free and open source software,
processes and tools, for use by any organisation.

The Commission hopes that this version will benefit not only European public services but
also the private sector to create their own open source software and tools inventories. In
return, the methodology would be strengthened and evolve forfuture use/adoption by other
entities.

The presentation and explanation of the generic methodology begins in Section 2 of the
present document, which briefly defines the term “Open Source Software” and describes,
concisely, the evolution of the methodology up to the optimal and ideal methodology (target
scenario).

From Section 3 onwards, the methodology described in detail using examples from the
European Commission.

Page 6 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

2. BACKGROUND

2.1. Open Source

For the definition of Open Source Software (OSS), we referto the Open Source Initiative (OSI)
— https://opensource.org/osd, which states what OSS is and what criterianeed to be metfor

it. Itis also meant to use the definition of free and open source software used by FSFE.

Since this document is only about open source, the term is implied in multiple places when
not written explicitly. Therefore, within the document, the term “software” refers to “Open
Source Software”.

Additionally, in the context of the projects performed under different European Commission
initiatives in relation to open source, OSS is defined as a computer software that is released
under alicence, in which the copyright holder grants users the rights to use, study, change,
and distribute the software and its source code to anyone and for any purpose. OSS might
then be developed in a collaborative public manner. Open Source software is, therefore, a
prominent example of open collaboration, meaning that, any capable user is able
to participate onlinein its development, thus, making the number of possible contributors
and iteration/version indefinite. Furthermore, the ability to examine the code facilitates
publictrust inthe softwarel.

2.2. Inception and evolution of the inventory methodology

The European Commission’s open source inventory methodology was originally created as
part of the 2016 EU-FOSSA Pilot project?, which was formed in the wake of the Heartbleed3
bug to assess potential security flaws hidden within the most critical Open Source Software
that the European Commission was using.

The Pilot Project was followed by a larger Preparatory Project in 2017, namely EU-FOSSA 24,
which used the methodology to create a second version of the inventory. The methodology
was also usedto create an inventory for the European Council.

L https://en.wikipedia.org/wiki/Open-source software

2 https://joinup.ec.europa.eu/collection/eu-fossa-2/solution/eu-fossa-pilot
3 https://heartbleed.com/

4 https://joinup.ec.europa.eu/collection/eu-fossa-2

Page 7 of 87

https://opensource.org/osd
https://en.wikipedia.org/wiki/Software
https://en.wikipedia.org/wiki/Open-source_license
https://en.wikipedia.org/wiki/Copyright
https://en.wikipedia.org/wiki/Software_distribution
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Open-source_software

The European Commission’s Open Source Software and Tools Inventory Methodology

During these inventory exercises there were, essentially, three tasks executed:

1. Collectinformationabout all the Open Source Software and tools in use.
2. Cleanand group the data, apply filters and assessment criteria.
3. Establishafinal inventory of the top 50 and 100 software in use, ordered by criticality®.

This process allowed the European Commission to identify the Open Source Software it most
used and reliedupon—i.e., its most critical Open Source Software.

This, therefore, allowed the Commission to protect the identified software via security audits
amongst other mechanisms.

2.3. Developing the Methodology

Duringits journey, from the EU-FOSSA Pilot project to today, the methodology has undergone
significant improvements and has acquired a certain degree of maturity in the three areas
presented below:

1. Software Components Data Collection: Represents the processes, tools and
techniques to collect the component inventory and the mechanisms to process the
consolidation of data with improved speed and accuracy.

2. Assessment Metadata Collection: Represents the processes, tools, and techniquesto
collect data for assessment of software such as “sustainability®” data (e.g., using
information about communities behind the specific 0SS), “vulnerability” data (about
the known defects within the software) and “business criticality” data (as measured
by the organisation).

3. Filteringand Ranking: Represents the processes, tools, and techniques tointeractively
filter/prioritise the inventory based on a set of criteria/thresholds.

> See section3.7 and 3.8 for how to identifycriticality.

6 See section 3.7 to understand how to establishthe sustainability criteria.

Page 8 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

The figure below summarises the progressive maturity improvements of the core aspects:

|qreas of improvementl | EU-FOSSA Pilot | _ ISA? action (2016.31)

Software
Components

Direct physical inventory
Near real-time
Complete inventory

Data Collection

Assessment
Metadata
Collection

Automatic Data Collection
Accessto international
databases

Filtering
Full flexible Business

and Intelligence

Ranking

W 2016 2018 2021

Figure 1: Evolution of inventory process from pilot to the optimal methodology (target scenario)

As depicted in the above figure, the optimal methodology should be reached through the
improvements of the three identified areas, namely, the software component data collection,
the assessment metadata collection and the filteringand ranking processes.

The software component data collection, the assessment metadata collection and the
filtering and ranking processes have been already improved across the execution of projects
under different European Commissioninitiativesinrelation to opensource.

Page 9 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

3. METHODOLOGY

From this section onwards, the document describes the methodology developed by the
European Commission for creating an inventory of Open Source Software, processes, and
tools.

3.1. Whycreate an inventory
What are the benefits for an organisation to spend considerable time and money to create an

inventory of Open Source Software?

Most organisations use a software catalogue — or inventory — of proprietary software which
comes with annual licence renewals and/or software support. Therefore, from one point of
view, it makes sense to also keep an inventory of Open Source Software which has a series of
extra benefitsas we’ll see further below. At a minimum, for OSS too, organisations ought to
manage their opensource for:

1. Licence compliance;

2. Support contracts.
Additional reasons and benefits

There are several reasons and benefits for creating an inventory of Open Source Software,
processesand tools. Some of these include:

e Identification of what type of software isbeingused, where and by whom;

e Identification of which software is critical for the organisation, and whether this
software s sustainable’.

e |dentification of whether the critical software and related applications are well
supported via support contracts.

e Identification of core/critical software for the organisation, which must be screened
for security vulnerabilities (e.g. the Heartbleed bug, which remained undetected,
caused over €600m inworldwide damage).

e Opportunity tounderstand the value of Open Source Software to the organisation and
to assess the reciprocal contribution the organisation makes to the open source
community or eco-system.

7 Sustainability hererefers to the health of the software in terms of its community, e.g. if the software has only
one person looking after its core development, then clearly its healthy continuity or sustainability would be
questionable.

Page 10 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

3.2,

Opportunity to examine procurement policiesin relationto opensource.

Possibility to highlight the usage of open source and examine whether it is used
properly, or whether improvements needto be made internally.

Visibility on the associated open source processes, tools and frameworks relating to
the software (and not just on the software itself).

Improved understanding of what is inuse and how transparentitis to the publicwith
the generated code.

Opportunity to consolidate the business applications built using open source. This
would be a different sort of inventory or catalogue (e.g., PHP is an Open Source
Software, but a corporate website or HR system built with PHP would be a business
application. Potentially, an organisation can have an 0SS inventory and an open
source applications catalogue).

Reuse of software solutions already built and tested, lowering significantly any
potential costs in unnecessary new-builds.

The methodology at a glance

The methodology has seven key steps:

1. Identifydatasources

2. Acquire data

3. Consolidate and load into a database

4. Analyse, cleanandenrichthe data (e.g. duplicates, names, versions, dependencies
and grouping)

Apply the businesscriticality and vulnerability criteria

o v

Apply software sustainability criteria
7. Produce final results/reports

Page 11 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

T
1

Data
Collection

Data

Managernen[2018 - Free and 1Wmﬂ‘3p¢ﬂ
Open Source — Umiecogrized sotware

Software Auditing
M

Catagaties
Software! License Type

&

Analysis

\

W

Number of instances X Example Inventory
Inventory Relevant to security S— ar: 08 i
1 Firefox: 0.6 Custom
Creation VLC: 037
User interface existence g Reports

Figure 2: Methodology Overview diagram

3.3. Step 1: Identifying Data Sources

Depending on the size of the organisation, Open Source Software data can be found in the
following places:

e Data Centre

e Departmental systems/servers
e Virtual machines

e EnduserPCs

e DeveloperPCs

e Cloud systems

e Mobiledevices

e Networkswitches, routers etc.

The typesof data can be equally widespread toinclude:
e Operatingsystems such as GNU/Linux (various distributions).
e Applicationsrunningon serversfor performance, messaging, email and connectivity.
e Software developmenttoolsand frameworks.

e User desktoptools such as web browsers, utilities, office suites, password managers;
etc.

Page 12 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

3.4. Step 2: Acquire data

Each of the identified systems would been requested to provide outputsviaa CSV file or other
extracts. The multiple CSV (Comma-Separated Values) files will then be, during step 3,
consolidated and uploadedinto a database.

nventory manager Workstation On Premise On Cloud Interviews /
Data Server Server Surveys
CSv

-
| v

Software Repository » -
(ie. Nexus) S Git
e . {1« = Repository
export -2 d
Database CSV

m'
lx\\
|||
m

[SEEY
1111
2
3

System
Sources/Tools

Workstation Linux Server Windows Server

« Landesk « Satellite « SCCM
« SCCM

Figure 3: Phase 1 - Acquiring Data

During the execution of Step 2 — Acquire data, the following activities are performedin order
to properly collect data:

a) Brainstorming to agree on the CSV’s mandatory and optional fields

b) Creation of CSV template and examples of the data that need to be
acquired/gathered

CSVsshould coversoftware installed on user workstations and servers on premisesor
on cloud (production, QA, etc.). Example/sample files should be provided to the
stakeholderalong with the documentto fillin.

Example:Since there are mandatory and optional fieldsincludedinthe CSV template
files, an example CSV template was provided with sample data in order to illustrate
and provide guidance on how to properlyfillinall the fields.

c) Share the template CSV file with selected departments

Departmentsfill in the datainto these CSVsand send them back —this should be done,
to the extent possible, via extract applications. In case data are provided via a
database, an accurate definition of everyfieldisexpected.

Example: Sharing the template CSV via extract applications is an option, however all
of the data werereceived viaseparate emails with attached CSV templatesthat were
previously provided.

d) Get data via interviews

Page 13 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

e)

In certain cases, interviews can provide some meaningful data. Data can be collected
during the interviews directly into CSV files or the interviewed organisations can be
invited to fill them in afterwards and send them back to the Inventory Manager.

Example: There are cases in which, whena CSV template is provided, some additional
clarifications may be required and/or requested for specific fields or columns. Thus,
separate meetings/interviews can be scheduled to go through the CSV template in
order to review and confirm with the stakeholder their understanding on how to
properlyinclude the relevantinformation.

Anonymisation of the information

Itisrecommendedtoanonymise the extracted data, prior to consolidatingit with data
from other sources. Anonymising data means ensuring it does not show personal
information such as names of users, computer names or file paths etc.

Example: In cases where files received contain personal information, e.g., names of
users or computer names, the relevant fields will be replaced with “XXXXuser”,
“XXXXcomputer” etc.

Page 14 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

3.5. Step 3: Consolidate and load into a database

2018- Free and Info ;r m@p

i.e. Open/ Not Open
Open Source Unrecognized software
Software Auditing

Categories
Software/ License Type

Rate Top

Evaluate

System
Sources/Tools

* Oracle

« SQL —
» Talend %
» R/Python (Tt

Figure 4: Phase2 - Data Management Data Model
3.5.1. Data Model

Once received, the data should be consolidated through a defined data model. Section a) of
the present document contains the sample data model that has been used for the
consolidation of the data received under the Open Source Software Inventory, Security,
Sustainability and Funding Initiatives for European Public Services, a component of the 2020
ISAZ Sharing and Re-use action (2016.31).

3.5.2. Steps to loading data

Inorder to consolidate the database and load the informationinitthrough Extract, Transform
and Load (ETL) tasks, it is important to understand first the received data and doublecheck if
it can be categorised as OSS. It is therefore importantto proceed as follows:

a) Understanding the received data

1. Identify the software components.

2. Establish whether the softwareis open source or not:
Example: To identify and establish that the software is open source or not, an
online researchis performed for each software.

3. Filter out non-Open Source Software:
Example: Separated files are produced to divide the Open Source Software files
from the non-Open Source Software ones.

Page 15 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

4. Apply any needed data transformation:
Example: The data transformation step is explained in detail in the following
Section 3.6, Step 4.

b) ETL Load

It is useful to use an ETL / BI tool, such as Talend, to load the data received into the
database. A proposed and ideal model exists and has been used during the execution
of the current project related to the Open Source Software Inventory, Security,
Sustainability and Funding Initiatives for European Public Services (see Figure 12).
Nonetheless, itis worth to note that the exact data model is determined by the type
and characteristics of the data received.

Step 4/7
3.6. Step 4: Analyse, clean and enrich the data

In this step, we analyse, cleanand group the received data as follows:
a) Categorisation of data

Group and categorise Open Source Software. All software that appears with similar
names, should be represented with a single name. Prior to this step, a file is created
in CSV format to gather all the software that isreceivedinthe appropriate format and,
at a later stage, will be further analysed.

Decide which software requires this categorisation (e.g. FirefoxA, FirefoxB =>Firefox).
As an example, the projectteam receives, from several stakeholders, software names

such as the ones in the below table that are then grouped, based on our
categorisation, under a “Parent” software.

Software names received Identified “Parent” software

“Child” software categorisation

Mozilla Fi

Mozzilla Fi Firefox

Firefox ES

NodelS

Node.js

NodeJS- Nodels

Nodejs

node

*Example taken from the project performed under the Open Source Software Inventory, Security, Sustainability and Funding
Initiatives for European Public Services, a component of the 2020 ISA2 Sharing and Re-use action (2016.31).

b) Process evaluation and re-run all steps

All previous steps need to be re-done multiple times, to eliminate the potential
mistakes or risks of duplicates and/or data overlooking. For instance, after the
categorisation that is performed, the project team can always identify room for
adjustmentsin the grouping of the software, as illustrated in the examples above.

Page 16 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

In order to apply all above steps, a new table called ‘Categorisations’ is created —
originating from the table that includes the software names received from the
stakeholders —to check which software belongs to which category.

The table “Categorisations” includes the following grouping of data (sample data):

PARENT SOFTWARE CHILD SOFTWARE NUM_OF_INST
FireFox Firefox 85081

FireFox Mozilla Fi 320

FireFox Mozilla Fi 82

FireFox FireFox 10

FireFox Firefox ES 6

FireFox Selenium 1

*Example taken from the project performed under the Open Source Software Inventory, Security, Sustainability and Funding Initiatives for

European Public Services, a component of the 2020 ISA%Sharing and Re-use action (2016.31).

3.7.

Assessment Criteria definition

Before we move on and execute steps 5 and 6 it is crucial — for the appropriate
implementation of the methodology —to proceed with a thorough and accurate definition of
the assessmentcriteria.

This methodology uses three types of criteria to filterand tag open source data, which are:

1.

“Business criticality” criteria: Applied to software components and applications, it
indicates how “heavily” the software is used within the organisation, based on the
number of instances (humber of installations) that each software has.

“Vulnerability” criteria: Applied to software components and applications, it shows
how secure the software can be, based on its relevance to security and the exposure
it has to users. The exposure is defined by the option of the software to have a user
interface and/or a user contact.

“Sustainability” criteria: Applied to open source communities and projects, itindicates
the strength of the software in terms of continuity. To assess and evaluate
sustainability, a set of measurable metrics is defined on the basis of aspects that can
affect and impact the sustainability of the targeted software. In general, such aspects
include:

e Community Activity

e Performance

e Qualityand Security

e Demographics and Diversity
e Governance

e Support

In conjunction with the identification of aspects, a Metric Measurement Approach is
developed which describes the process for measuring metrics used to evaluate
sustainability.

Page 17 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

In our case, the project team has used the set of metrics developed and defined by
WP1 of the EU-FOSSA Pilot project (See Annex 2: Metrics and Sustainability).

3.8. Step 5: Apply the business criticality and vulnerability criteria

I

Info
2018- Free and i.e. Open / Not Open
Open Source U software
Software Auditing

Categories
Software/ License Type

~
Change Criteria if needed

.
Number of instances o @ '.. Example Inventory
- .
: Relevant to security ° ar-0.8 +
... P Firefox: 0.6 Custom
User interface existence : Ve oo Reports

Custom Reports

All Software Top100 Top100

+ Software per system * Software dependences

+ Group of Software

. R . Type * Critical shortlist Rating
Criticality Ranking + Software per software (34 Criteria)
Type

Figure 5: Phase 3 - Criteria and Inventory Creation Data Model

a) Number of instances analysis

A software list is created with all relevant categorisations and number of instances
(number of installations) that each software has. The normalisation (normalised score)
is applied on a scale ranging from 0 to 1, based on the most common software
(maximum instances).

Rationale: The more a software is deployed, the more it impacts the infrastructure
and/or user base, and the more damage a vulnerability could cause.

Rating: Normalisation ranges on a scale from 0 to 1, based on the most common
software (maximum instances).

b) Security analysis

The exposure of the software is analysed to define the relevance of the security. A
binary rating is introduced (security-related =0.5, not security-related = 0).

Rationale: Avulnerabilityin acomponentrelated to asecurity aspect may increase the
damage due to an exploit. Examples of security-related software are the solutions

Page 18 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

meant to secure communication, manage authentication, manage processes and
permissions, etc.

Rating: A binary rating (security-related =0.5, not security-related =0).

c) User Interface analysis

We analyse whether the software has a User Interface or not and whether it can be
easily hacked or not. A binaryrating isintroduced (exposed to users= 1, non-exposed
to users = 0).

Rationale: A vulnerabilityina component exposedto the end user (i.e. that offers an
interface to end users) increases the risk of an exploit attacking the software. This
criterion only applies to data centre infrastructure, since workstation users have a
direct loginto their machines.

Rating: A binary rating (exposed to users = 1, non-exposed tousers = 0).
d) Index calculation

The total score — provided by the sum of the three above scores — is then normalised
on ascale of 0 to 1 (dividing by 2.5, i.e. the sum of the highest values of the three
criteria).

In this way the “Business Criticality Index” is created.

In the example displayed below, we notice that the initial list of the software namesis sorted
based on the number of instances, starting with the software with the maximum number of
instances. The criticalityindexes are applied accordingly:

=>» Interface
=>» User Contact

=» Exposure to users

=> Security
Criticality Indexes

LibreOffice 10910 1 0 1
Ubuntu 1562 1 0 1
SonarQube 1105 1 0 1
Squash 946 1 0 1
Git 742 1 0 1
SILL 517 1 0 1
As an example, the criticality indexes forthe software KeeFox are shown below:

|KeeFox | | 293| 1 0 1

A sample of application scores for the same software group isshown below.

0.5
0.5
0.5

0.5

Page 19 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

LibreOffice 10910 10910 10910

Ubuntu 1562 10910 1562 0. 1431714—02
SonarQube 1105 10910 1105 0.101283226
Squash 946 10910 946 0.086709441
Git 742 10910 742 0.068010999
SILL 517 10910 517 0.047387718
And, specifically, for Keefox:

oy - -
KeeFox 293 10910 203 0.026856095

i i

1.643171402
0.5 1.601283226
0.5 1.586709441

0 1.068010999
0 1.047387718

0.5 1.526856095

Normalized
score

Instances of the most Relative # of | Exposure |Relation with Score i
- common of the list instances to users security
0.8

0.657268561
0.640513291
0.634683776

0.4272044
0.418955087

Instances of the most Relative # of | Exposure |Relation with Normalized
common of the list instances to users security

0.610742438

*Examples taken from the project performed under the Open Source Software Inventory, Security, Sustainability and Funding Initiatives

for European Public Services, a component of the 2020 ISA%Sharing and Re-use action (2016.31).

Outcome:

KeeFox has received a score of 1.526856095 (as a result of adding up the metrics “Relative
of instances”, “Exposure to users” and “Relation with security”), putting the software at

the 57t position.

However, to be able to analyse all metrics on the same scale, in a quantitative way, the
scores have to be normalised by dividingthem by 2,5 (the sum of the highestvalues of the
three criticality indexes). The normalised score of KeeFox is therefore of 0.610742438.

Based on this last normalisation process, if all software were sorted by highest score first,
KeeFox would move from its original 57t position to the 20t position. This means that
compared to all the software in the list, KeeFox’s business criticality climbed up 64,91%
making KeeFox appear as a much more important and critical software than initially

analysed.
Original Sorting based on Scoring

LibreOffice 0.8 1 1 10.00% 10910
Ubuntu 0.657268561 2 2 10.00% 1562
SonarQube 0.640513291 3 3 10.00% 1105
Squash 0.634683776 4 4 10.00% 946
Selenium 0.618515124 7 5 128.57% 505
FireFox 0.618331806 8 6 1~25.00% 500
CE gravity 0.614812099 11 7 136.36% 474
Rancher 0.614152154 19 8 157.89% 387
exodus-privacy (standalone) 0.61411549 20 9 /}55.00% 358
Opal 0.613932172 21 10 152.38% 357
SecureFlag Community 0.613455545 29 11 162.07% 355
Yunohost 0.613235564 34 12 164.71% 314
postfix.admin 0.613162236 35 13 162.86% 302
Tomcat 0.611512374 44 14 168.18% 283
Vault 0.611439047 45 15 166.67% 256
ARX Data Anonymization Tool 0.61136572 46 16 165.22% 249
CockroachDB 0.611109074 51 17 166.67% 246
Keycloak 0.611035747 53 18 1466.04% 243
Escalation 0.610852429 56 19 166.07% 242
KeeFox 0.610742438 57 20 164.91% 231
CentOS 0.609129239 76 21 N72.37% 223
Debian 0.609019248 77 22 N71.43% 211

*Example taken from the project performed under the Open Source Software Inventory, Security, Sustainability and Funding Initiatives

for European Public Services, a component of the 2020 ISA%Sharing and Re-use action (2016.31).

Page 20 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

Although a lot of manual work is needed, especially in the cases of new software, this data
management stage should be as automated and parametrised as possible.

A mechanism that will detect and explore only new software additions —and function as a
first stage of control, too —can be useful for the respective future projects.

3.9. Step 6: Apply software sustainability criteria

For the top 30 results, apply the defined sustainability criteria. In our case, the project team
has appliedthe onesdefined in Annex 2: Metrics and Sustainability.

To illustrate how the below sustainability criteria metrics have been defined, the KeeFox
software has been, again, selected as an example.

In the below case, the following metrics have beenillustrated:
e Code Activity = Metric 1 from the Community Activity aspect
e Release History = Metric 2 from the Community Activity aspects

e Number of Tickets = Metric 4 from the Community Activity aspect

The below presented results were produced based on online research.

Code Activity = Metric 1 from the Community Activity aspect

Metrics family KeeFox (Kee is the new version)
Source https://www.openhub.net/p/keefox
contrib who committed 80% 1
contrib over past year 1
Contributors ratio 9%
Textual metrics Very dependant
1 - Code Activity Normalized ratio 0%

*Example taken from the project performed under the Open Source Software Inventory, Security, Sustainability and Funding Initiatives for
European Public Services, a component of the 2020 ISA? Sharing and Re-use action (2016.31).

For example, the criteria of contributions, namely “#contrib who committed 80%” and
“H#contrib overthe past year”, that belongto the Code Activity (metric1 from the Community
Activity aspect, were taken from https://www.openhub.net/p/keefox).

Page 21 of 87

https://www.openhub.net/p/keefox

The European Commission’s Open Source Software and Too

Is Inventory Methodology

The data isshown in the screenshotbelow:

Many reported
vulnerabilities

Code

Lines of Code Commits per Month

Zoom lyr 3yr Syr

\ 2 2010 2012

2010 2012 2014 2016 2018 2020

M Code M Comments Blanks M\AWMMAMM
g i

30 Day Summary

0 commits
Languages 0 contributors

Javascript 76% XML 12%
L} P L}
§ 50Other 12%

Few reported
vulnerabilities

About Project Vulnerability Report

Activity

12 Month Summary

1 commits
Down 0 (0%) from previous 12 months

1 Contributors
Down 0 (0%) fram previous 12 months

Figure 6: Example of Contributing Activity Metric

Release History = Metric 2 from the Community Activity aspect

Another example that could be used to illustrate how the “Re

lease History” (metric 2 from

the Community Activity aspect) was produced is taken from the following link:

https://github.com/kee-org/KeeFox/releases

The value “Managed” is provided since it seems that there
release/publication when development objectives are achieve
shown inthe screenshot below.

(=] kge-a\gi- KeeFox Public archive

<>Code (@lssues 11 Pullrequests (@ Actions Projects O Wiki @ Security | Insights

1.8.0

Compare ~ KeeFOX 1-8

See the full release announcement on the Kee community forum,

Users of Kee 2.x do not need to take any action.

is an informal approach, for
d from the release history, as

L) Notifications 17 Star

Users of KeeFox within Thunderbird must uninstall KeeFox and then install the new add-on, KeeBird 1.0.

- Assets 3

@ kee-1.8.0-fx.th.xpi

[source code (zip!

[) Source code (tar.gz

Owrz 172

Number of Tickets = Metric 4 from the Community Activity aspect

45

Page 22 of 87

https://github.com/kee-org/KeeFox/releases

The European Commission’s Open Source Software and Tools Inventory Methodology

To illustrate how the sustainability criteria have been applied and results been produced, the
“Number of Tickets”(metric 4 from the Community Activity aspect) will be used as a last
example.

The defined available values forthe “Number of Tickets” are:

1. Veryactive: thereare, at least, 10 tickets created in the last week.
Active:there are, at least, 10 tickets created in the last two weeks.
Average:there are, at least, 10 tickets created in the last month.

Inactive:there are, at least, 10 tickets created in the last three months.

AN

Very Inactive: rest of the values.

As depicted in the below screenshot — taken during the online research performed on
https://github.com/kee-org/KeeFox/issues — the last ticket was opened on October 2020.
Therefore, we can consider that the value to be provided is “5 — Very inactive” since it
includes anything over three months old.

(=] keeforg / KeeFox Public archive £ Notifications

<> Code @ lIssues 19 Pull requests ® Actions [Projects 0 Wiki @ Security |~ Insights

Q isissue sortupdated-desc isclosed © Labels 1 P Milestones 3

Clear current search query, filters, and sorts

@ 00pen 756 Closed Author~ Labelw Projects~ Milestonesw Assignee~ Sort

@ support KeepassX integration invalid project-arc! an
#523 by Rewarp was closed on Oct 16,2020 (D) updated o

© support Mac 0. (EHREIERERD pr on
#22 by lud closed on Sep 8 2020 20 P Futur

Sep s,

@ Auto-Lock Database on &xi hived Qs
#78 by luckyrat was closed on Sep 8, 2020 () updated on 20 P Future

© Allow use of environment variables in fields like KeePass location (EHEREHERD project-archived [=H
#86 by luckyrat was closed on Sep 8 2020 (9) updated on Sep 8 2020

© Emulate keystrokes or auto-submission delay (ERRSMEMEND project-archived [=E!
#80 by luckyrat was closed on Sep 8, 2020 (9 updated on Sep 8, 2020 &P Future

@ Create a "start recording multi-page login process now" button (EREBREERERD project-archived Qs
#92 by luckyrat was closed on Sep 8, 2020 (9 updated on Sep 8, 2020 &P Future

@ support regular expressions or wildcards in form field names (ERRERGEMERD) project-archived [=E]
#107 by luckyrat was closed on Sep 8, 2020 (2 updated on Sep 8, 2020 & Future

© Permit Wildcards in per-site configuration (GRS project-archived (=53

#113 by luekyrat was closed on Sep 8, 2020 (D) updated on Sep 8, 2020

Figure 7: Activity Metric for KeeFox

This would produce the followingresults formetric 4 from the Community Activity aspect:

https://github.com/kee-
Source org/KeeFox/issues
at least 10 tickets over last: more than three months
Textual rating \ery inactive
4 - Number of Tickets Normalised ratio 0%

*Example taken from the project performed under the Open Source Software Inventory, Security, Sustainability and Funding
Initiatives for European Public Services, a component of the 2020 ISA% Sharing and Re-use action (2016.31).

¥r Star

Page 23 of 87

https://github.com/kee-org/KeeFox/issues
https://github.com/kee-org/KeeFox/issues
https://github.com/kee-org/KeeFox/issues

The European Commission’s Open Source Software and Tools Inventory Methodology

. Step 7/7
3.10. Step 7: Produce final results/reports

The last part isthe creation of the inventory that includes the following tasks:

e Create the software inventory, includinga number of custom reports.
e Prepare a publishable version of the inventory.
e Produce asummary and presentto management.

3.11. Summary and conclusion on the Inventory Methodology and sample reports

3.11.1. Software inventory procedure from the Inventory Manager’s perspective

Step 1: Identifying Step 2: Acquire data Step 3: Consolidate Step 4: Analyse, Step 6: Apply Step 7: Produce final
Data Sources « Brainstorming and load into a clean and enrich the software results/reports
+ Creation of template Database data sustainability criteria
* Sharing the template + Define Data Model + Categorisation of data
« Stakeholder interview * Understand the data « Process evaluation
+ Data anonymisation * ETL Load

Figure 8: Procedure from Inventory Manager's perspective

Data collectionisa “pull” process startingwith a periodicreminder (forexample an e-mail) to
the interested counterparties (the stakeholders owningthe relevant data) sent by the process
owner, or Inventory Manager (to be properly identified and appointed). The reminder
message shall indicate a due date and a set of instructions for operators on how to execute
the data extraction and allocationinto the repository.

Once the Inventory Manager has received sufficient confirmation from all data providers, s/he
will start the ETL sub-process to populate the inventory database and create the necessary
ETL jobs based on the level of information received.

For the Data Centre, the underlying hypothesis is that all collected data are about known
software. This means that all items treated in the inventory must have been previously
recognised as software components or software products bearing some brand name
(including in-house codes) that can be associated with an external manufacturer (or an
organisational unit) or witha community.

As for desktops, it is expected that the full list of installed software is made available for the
inventory. When the inventory database is populated, the Inventory Manager can manually
adjustthe rankingcriteriabased on a first set of quantitative criteria (possibly excluding some
criteria and/or fixing thresholds) and interactively select the most relevant set of software
applications/components.

Finally, the set of selected software (components) can be enriched with metadata such as
licensingtype, known vulnerabilities etc., and be prepared for the final ranking.

“Unknown” software (i.e. software not associated with a community, organisational unitof a
stakeholder, or another identifiable manufacturer) is the first candidate for inspection, but
this is out of the scope of this methodology (see Section 4, “Recommendations and Next

Page 24 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

Steps”). However, some additional processing can be applied to software recognised as open
source, to decide how to contribute to their OSS communities.

One inventory use case could be to obtain a shortlist of critical software components, by
applyingcriteria to the inventoryitemsin order to rank them by criticality.

The final ranking is performed by the Inventory Manager, adjusting the previous ranking
based on a second set of qualitative criteria (sustainability).

3.11.2. Sample reports

The inventory consists of a number of Custom Reports based on all available data. These
Custom Reports are as follows:

a. Grouping of Software

PARENTSOFTWARE ~ | SOFTWARENAME *|NUM_OF_IN{~! EXTENSION |~ OPENS-T|
FireFox Firefox 85081 TRUE
LibreOffice libreoffice 85080 TRUE
Thunderbird Thunderbird 85080 TRUE
adoptopen)DK adoptopen)DK 85000 TRUE
openSC openSC 85000 TRUE
ssh ssh 85000 TRUE
VLC VLC Media Player 85000 TRUE
VLC vnc 85000 TRUE
Ubuntu Ubuntu LTS 78000 TRUE
luks luks 30000 TRUE
strongswan strongswan 30000 TRUE
LibreOffice LibreOffice 10493 TRUE
Debian Debian 4746 TRUE
Syslog-ng Syslog-ng 4742 TRUE
squid squid 4501 TRUE
apache apache 4500 TRUE
bacula bacula 4500 TRUE
cups cups 4500 TRUE
dovecot dovecot 4500 TRUE
naemon naemon 4500 TRUE
nginx nginx 4500 TRUE
php php 4500 TRUE
samba samba 4500 TRUE
Ubuntu Linux Ubuntu OS 1262 TRUE
Haproxy Haproxy 1000 TRUE
Python python 1000 TRUE

Figure 9: Grouping of Software Report

*Example taken from the project performed under the Open Source Software Inventory, Security, Sustainability and Funding Initiatives for
European Public Services, a component of the 2020 ISA? Sharing and Re-use action (2016.31).

b. Software by System Type

Page 25 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

PARENTSOFTWARE SYSTEMTYPE NUM_OF_INST
7zip Server 1

Workstation 127

(blank) 76
Acceleo (blank) 304
achat (blank) 1
adoptopen)DK Workstation 85000
Aegisub (blank) 1
aide-sociale (blank) 3
AjaxControlToolkit Server 1
Akelpad Server 1
ALCASAR (blank) 1
ALM (blank) 1
Alternatiff (blank) 2
Anaconda Server 1
Android (blank) 1
Angular Mobile device 1

Server 2
Ansible Server 3

(blank) 225
apache Server 4605
Apache SolR Server 1
Apache Ant Server 1
Apache Ignite Server 1

Figure 10: Software by Systemtype Report

*Example taken from the project performed under the Open Source Software Inventory, Security, Sustainability
and Funding Initiatives for European Public Services, a component of the 2020 ISA? Sharing and Re-use action
(2016.31).

Page 26 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

c. Criticality Ranking

0SS shortlist ranked based on
Normalized Score

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

e ——————————————————— R
10657268561

vy, e 061051001

< 1063468377

e ———————————————————— Y

o
§,) 0 618331806

.0
")z\\é“ 061481209

£y
q“;éé e —————————— LAY

((}’é-'\(\é\ e 061411549
S e 0613917
§ O_QA.] 0 613455545
) 0613735564
e 0613162236
) 0611512374
10611439047
) 061136572
;\’50 7061110974
K\.owc-
e T
770610852429
O e o 10742038
F S e 0 608120238

Q

N ————

s (_,.é?{f 0.609019248
Lo 10608909258

S,) (603372594

Q?%Q%
0
&
G

Figure 11: Criticality Ranking Report

*Example taken from the project performed under the Open Source Software Inventory, Security, Sustainability and Funding Initiatives for
European Public Services, a component of the 2020 ISA? Sharing and Re-use action (2016.31).

Additionally, the inventory consists of a number of Custom Reports based on the top 30
results. These Custom Reports are as follows:

Page 27 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

a. Software by Software Type

Top Open Software No of Instances Software Type

LibreOffice 10910|Application software/Tool
Ubuntu 1562|Operating system
SonarQube 1105|Application software/Tool
Squash 946|Application software/Tool
Selenium 505|Runtime software platform
FireFox 500|Application software/Tool
CE gravity 474|Application software/Tool
Rancher 387|Development platform/framework
exodus-privacy (standalone) 358|Mobile software

Opal 357|0Operating system

Tomcat 283|Runtime software platform
Vault 256|Application software/Tool
ARX Data Anonymization Tool 249|Application software/Tool
CockroachDB(not fully open-sourced, must purchase a license) 246|Runtime software platform
Keycloak 243|Application software/Tool
Escalation 242|Application software/Tool
KeeFox(Kee is the new version) 231|Application software/Tool
CentOS 223|Operating system

Debian 211|Operating system
Syslog-ng 207|Libraries

Rudder 189|Application software/Tools
ClamAV 184|Application software/Tool
Centreon 183|Application software/Tool

Figure 12: Software by Software Type Report

*Example taken from the project performed under the Open Source Software Inventory, Security, Sustainability and Funding Initiatives for
European Public Services, a component of the 2020 ISA%Sharing and Re-use action (2016.31).

b. Software Dependencies

Components -} |Number of Dependencies Components +! |Number of Dependencies
FireFox 38 glibc 5
exodus-privacy (standalone) 31 zlib 5
CE gravity 22 glib2 4
Opal 18 bash 4
LibreOffice 17 libxX11 3
Ubuntu 16 gtk2 3
Squash 12 systemd 2
Rancher 10 libXext 2
SonarQube 7 libselinux 2
Selenium 7 freetype 2
Grand Total 178 log4j 2
gdk-pixbuf2 2
libffi 2
bcmail-jdk14 2
commons-beanutils 2
lua 2
libXrender 2
gtk3 2
fontconfig 2
hamcrest 2
nss 2
Chart.yml 1
xml-apis 1

Figure 13: Software Dependencies Report

Page 28 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

*Example taken from the project performed under the Open Source Software Inventory, Security, Sustainability and Funding Initiatives for
European Public Services, a component of the 2020 ISA%Sharing and Re-use action (2016.31).

c. Critical shortlist Rating (34 different criteriawill be applied)2.

Metrics family LibreOffice Ubuntu SonarQube Squash Selenium FireFox CE gravity
http: openhub.ne http: openhub.ne http: openhub.ne https://github.com/Selen https://www.openhub.net/pffir https://github.com/gravit
Source https:/www.libreoffice.org/ tp/ubuntu Up?query=SonarQube Up?query=squash iumHQ/selenium.git efox ational/gravity.git
contrib who committed 80% 4 1 1 4 5 240 7
contrib over past y 75 12 58 25 55 5226 23
Contributors ratio 74% 49% 81% 67% 76% 82% 67%
Textual metrics Split Average Very split Split Split Very split Split
1- Code Activity Normalized ratio 5% 50% 100% 5% 5% 100% 5%
https:/mww.squashtest.
https://docs.sonarqube. com/community- https://github.com/Selen
https://wiki. ntfoundat https://wiki.ubuntu.com; upgrade- roadmap-releases- iumHQ/selenium/releas http: mozilla.org/en- https://goteleport.com/ar
source ion.org/ReleasePlan Releases notes/ tm?lang=en es USffirefox/releases/ avity/docs/changelog/
Textual metrics Managed Optimized Managed Managed Managed Optimized Managed
2 - Release Histor! ratio 50% 100% 50% 50% 50% 100% 50%
commits last year 6789 117 1183 812 834 53205 402
commits last year top
popular OpenHub Repository 884 884 884 884 884 884 884
Ratio 768% 13% 134% 92% 94% 6019% 45%
Textual metrics Very active Average Very active Very active Very active Very active Active
3 - Number of Commits ed ratio 100% 50% 100% %&(‘7% 100% 100% 75%
uglist.cgi?short_desc=libreof rg/buglist.cgi?short des https://jira.sonarsource. rg/buglist.cgi?short des rg/buglist.cgi?short des https://bugzilla.mozilla.org/qu ra/buglist.cgi?resolution
Source fice&query format=advance c=ubuntu&short desc t com/issus c=squash&short desc c_type=allwor ibstr& ery.cqi e
at least 10 tickets over last: last week last week last week more than three months last month last week more than three months
Textual rating Very active Very active Very active Very inactive Average Very active Very inactive
4 - Number of Tickets ratio 100% 100% 100% 0% 50% 100% 0%
Textual rating Optimized Optimized Optimized Optimized Managed Optimized Initial
5 - Communications ratio 100% 100% 100% 100% 66% 100% 33%

Figure 14: Critical Shortlist Rating Report (Assessment of top items in the inventoried software against the
criticality mechanism defined in the EU-FOSSA Pilot project)

*Example taken from the project performed under the Open Source Software Inventory, Security, Sustainability and Funding Initiatives for
European Public Services, a component of the 2020 ISA%Sharing and Re-use action (2016.31).

It should be noted that the set of sustainability criteria contains a number of qualitative
criteria previously defined by the Inventory Manager, on the basis of a thoroughly designed
and described Metric Measurement Approach. Therefore, in order to produce more reliable
results, the metrics should be adjusted accordingly for each project (i.e. removed or replaced
with a more quantifiable set of options, dependingon its specifics and characteristics).

8 See Deliverable 6 - Final Metrics Definition (europa.eu).

Page 29 of 87

https://joinup.ec.europa.eu/sites/default/files/inline-files/DLV%20WP1%20-%2006%20-%20Final%20Metrics%20definition_published(2).pdf

The European Commission’s Open Source Software and Tools Inventory Methodology

4, RECOMMENDATIONS, GOOD PRACTICES AND NEXT STEPS

As mentionedin chapter 2, to reach its full maturity, the methodology should improve the
three identified areas to:

1. Enable a direct and automated way to collect, in real-time, the data from the
system/servers of the various stakeholders and, therefore, improve the completeness
of the inventory since this would not depend on a manual selection of information
provided by the stakeholders.

2. Enable an automated system to collect assessment metadata through international
databases.

3. Use aBusinessIntelligencetool to proceed with the steps currently done manually via
spreadsheetfiles.

An example of a targeted/target scenario, implementing an updated and optimal
methodology, is described in paragraph 4.3 - “The target scenario — first step” and uses a
public international organisation as “implementer” of a further mature/optimal
methodology.

The target scenario is used as an example and forillustration purposes only, and recognises
that each publicor private administration will have its own target scenario and will, therefore,
adapt the methodology to its own contextand needs.

The below sections provide recommendations and good practices to apply while implement-
ing the methodology as well as a projection on how the optimal methodology could be im-
plemented by an organisation.

4.1. Recommendations

Based on the analysis performedin the framework of the present project, namely the Open
Source Software Inventory, Security, Sustainability and Funding Initiatives for European Public
Services, some recommendations are hereby provided on future actions that stakeholders, or
any future interested Inventory Manager, may implement to enhance the efficiency and
effectiveness of the Inventory Methodology and its related processes:

e Continuealongthe guidelinesset by this project, enlargingits scope and consolidating
processesand IT systems:
o Industrialise the methodology described in these pages through the
development of a maximum of automated processes;
o Industrialise the processes andinformation system elementsintroduced in this
document, transforming them in an “industrial” solution (see section 5.2).

e Adopt security practices into the software development/adoption lifecycle:

Page 30 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

4.2.

a)

Selectand install only secure and supported open source software;
Actively maintain an accurate list of OSS components and applications;
Identify vulnerabilities during development;

0O O O O

Alert product/solution managers of potentially vulnerable applications based
on the track of new vulnerabilities.

Foster the adoption of a common Configuration Management Database (CMDB)
consolidatingall the differentinventories.

Applyand implement, to the extent possible, the good practices presentedinthe next
section.

Good practices

Target data model definition

To consolidate the received data, the Inventory Manager should use a data model. The
presented Target Data Model is an ideal conceptual, object-oriented model. Therefore, it is
technology-independent and is not intended to be an image of the database the inventory
tool will use. Thus, entities are not mapped one-to-one in database tables.

The below presented model isrecommended by the project team as a good practice and has
been used and verified during the performance of the current project related to the Open
Source Software Inventory, Security, Sustainability and Funding Initiatives for European Public
Services.

The model describes:

Entities: coherent aggregates of information, related to real-world objects, ideas or
contexts, which are commonly stored into database tables.

Attributes: simple pieces of information (text, numbers, lists, etc.) belongingto an
entity, which are commonly stored into database table columns.

Relationships: connections that represent hierarchy or interaction between entities.

Each entity has the following properties:

Name: a sequence of words that identifies the entity.

Description: a short phrase that explains the role and information content of the
entity.

Requirements: a list of the project requirements that led to the definition of the
entity.

Sources: a list of the information sources from which the entities’ information is
gathered (e.g. Landesk, App-V, Satellite).

Type: if the entityisa specialisation of anotherentity, the value is “Dependent”; else,
the valueis “Independent”.

Page 31 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

Attributes are organised by entities. Each attribute has the following properties:
¢ Name: a sequence of words that identifiesthe attribute.

e Definition: a short phrase that explains the role and information content of the
attribute.

e Required: if thefieldrequired or not.
e IsPK: ifthe attribute isused to identify the entityit belongsto.
e IsFK: ifthe attribute references an external entity.

The model is built around the Software and System core entities. The Software entity
aggregates all the information required to perform the software inventory, software
attributes and meta-data, while the System entity contains the information related to the
systems, physical or virtual, where the software is deployed. The data for the Software entity
are manually and locally managed by the Inventory Manager, while the ones that belong to
the System entity are automatically loaded from external systems (Landesk, App-V, Satellite
and other CMDBs). A third entity, Softwarelnstance, represents the software that has been
actually deployed, and works as a bridge between the two.

The Software entity is related to versions and licences. Each software versionis tied to its
evaluation criteria, which are evaluated to assess if the software must be includedin the
Critical Software Shortlist. The software classes that were declared as in-scope in the
requirementsare also modelled as specialisations of the Software entity.

The System entity is divided into workstations, servers and mobile devices. The first two
systemtypes are in-scope, while the last one is currently under evaluation. It will be excluded
from the Data Model if definitively assessed as out-of-scope.

Both Software and System entities are related to the standards they comply with. As the
standard inventory is a project requirement, a Standard entity contains all the information
gathered from the information sources and can be considered as a fourth core entity.

Organisations that own or produce software, standards and/or systems are also related to
the four main entities that have been modelled.

Details about project requirements are mapped to entities that answer to those
requirements. The same operation is performed for data sources that have been currently
identified as available.

Page 32 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

” N = SoftwareCritera Criterion
DependsOnSoftwareName
DependsOnVersionNumber (FK) SoftwareName (FK) - CritenonName
SoftwareName (FK) CriterionName (FK) H hreshold
VersionNumber (FK) Weight
I License
|
SoftwareVulnerabites SoftwareVersion Softwarelnstance LicenseType
SoftwareName (FK)
SoftwareName (FK) \SloﬁWtr;N-r::'(FK) , SystemName (FK) . —
VersionNumber (FK) erssoniNumi Vv N c LicenseCor m -
VuinerabiityName (FK) o : ersionNumber (FK) OrganzationName (FK)
T Sze
Standard I
StandardName
Vuinerabiity Sohware | StandardCompiance Description | —_——
VuinerabityName) SoftwareName (FK) StandardsatonBody (FK) I |
SoftwareName StandardName (FK) ECContext
Descrpton + H Doc ™ I I I_
Description IsCritical ParentStandardName (FK) I
Impact ' ’ et x
Remedaton AOWName t _| I I
AOWPosition ___l____—l'_}—l——
Developer (FK)
SoftwareType ppei—ie——— l Organzaton i |
| I _I_ — — 4] OrganzatonName I
I Location ORI |
>SoftwareType Description -
} Syst
AppSoftware CustomSoftware MobieSoftware RuntimeSoftwarePiatform OperatingSystem DevelopmentPiatform DataCenterResources
| SoﬂwareName(FK)] |SoftwareName(FK)] |SohwareNarne(FK)] [SoﬁwareName(FK) | [SoﬂwareName(FK)] |SoftwareName(FK) |]SoﬁwareName(FK)]

|)| J1 J{ J{ | |) |

J

Figure 15: Target Data Model Diagram

More detailed information about the model is provided in Annex 3: Detailed Description of
Target Data Model.

b) Focus on the internal software development/acquisition processes by adopting best
practices and solid solutions.

TRUST VERIFY MONITOR

FProactively choose Identify vulnerabilities during
secure, supported development

apen source Alert new
vulnerabilities in

production apps

Maintain accurate list of
0SS companents
throughout the SDL

Figure 16: Proposed high level to-be approach

Page 33 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

A best practices solution would combine elements of TRUST, VERIFICATION, and
MONITORING:

1 —-TRUST means providing developers and architects with a way to choose open source
components that are free of known vulnerabilities and have active community support. This
is a proactive step that reduces risks downstream in the software development process, and
is the most cost-effective means of risk reduction.

2 — VERIFICATION means maintaining an accurate inventory of open source software and
beingable to map allits known vulnerabilities, inany and all applications, at any point in the
SDL.

3 — MONITOR means being able to monitor the released code for newly discovered
vulnerabilitiesand alertthe right people forremediation. With over 4,000 new vulnerabilities
each year, a comprehensive solution should be to continuously monitor the constant stream
of new vulnerabilities and automatically notify the administrator of any new vulnerabilities in
the open source components usedin deployed applications, including which applications use
the code, how critical the vulnerabilityis, and how to remediate it.

c) Handling “unknown” software

An additional, and very important, aspect is the enlargement of the software component
scope to include “unknown” software. In such cases, the added value of the “target” scenario
can be significantly higherthan the previousrelative projects, including thisone.

As describedin the data collection section?, this project is based on the hypothesisthat only
“known” software components/applications will be dealt with.

Management of “unknown” software is a strong constraint and a complex aspect. It requires
the handling of large amounts of raw inventory data. Moreover, “unrecognised objects” have
to be collected and matched with some “known” data patterns in order to understand their
nature (source code, executable, scripts etc.), and professional tools will be needed to scan
and recognise them.

Despite the complexity of the abovementioned process, from a security point of view, the
most interesting elements are the “unknown” software components, which is why the project
team strongly recommends considering thisaspect as a priority in future projects.

9 Section 3.4.Step 2 : Acquiredata

Page 34 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

4.3. The target scenario — first step

This section serves as an example of a target scenario, which uses a public international
organisation (PIOX) as “implementer” of a more mature/optimal methodology.

The target scenariois used as an example —and for illustration purposes only—and recognises
that each public or private administration will have its own target scenario and will adapt the
methodology to their own context and needs.

The first step afterthe conclusion of this project should be to start a programme to reach the
“target” scenario, with robust and agreed processes and an industrial-grade IT support
solution.

The suggested “target” scenario is as follows:

e PIOX makes recurring automatic inventoriesto collect the software components that
are in place (developmentand production);

e PIOX has a consolidated CMDB whichiis regularly enriched with inventory data;

e PIOXhas a consolidated repository where it storesa “reference” copy of any in-house
developedordownloaded/used software (source, executable, dataetc.);

e On a regular basis, PIOX conducts automatic verifications that code present on the
systems corresponds to the “reference” copy;

e PIOX has a policyto apply a form of licensingto its in-house developed software and
has a policy to evaluate whetherto submit this software to a public community or to
contribute to an OSS initiative;

e PIOX has a policy to foster employees’ contribution to open software communities
with the products of theirwork;

e On aregularbasis, PIOX scans the code repository with appropriate tools to find any
possible “alien” or “unlicensed” software component.

A detailed analysis regarding the toolsthat can be used to support the open source inventory
and their ranking is the objective of another specific deliverable. Below, the overall features
of the “target” processes/solution are presented:

1. Industrial automatic discovery and inventory tool, able to collect all the information
about software components;

2. Automatic inquiry of large internet databases to find additional metadata (licensing

form, community dimension, vulnerabilities etc.);

Semi-automaticsemanticweb engine capable to enrich an initial list of standards;

Graphic editing of the standard taxonomy;

“Business Intelligence” dashboard with customisable ranking criteria/rules;

Automatic publishing of the inventory and ranking as open-data on http://open-

data.europa.eu/.

I e

The “target” recurring processes are therefore the following:

Page 35 of 87

http://open-data.europa.eu/
http://open-data.europa.eu/

The European Commission’s Open Source Software and Tools Inventory Methodology

1. Automatic and semi-transparent Open Source Software component inventory and
classification.

2. Automaticinquiry of internet databases.
Semi-automaticranking.

4. Selection of candidates for the code review.

This ideal situation will be enriched and described as the project progresses and will,
eventually, provide a set of pragmatic recommendations to improve procedures, tools and
data quality.

Page 36 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

ANNEX 1: AVAILABLE INFORMATION SOURCES FOR EUROPEAN COMMISSION

To helpin understandingthe process of collecting open source information, it may be useful
to see what the European Commission did. Forthe EC, the followinginformationsources were
identified:

Figure 17: Informationsources (European Commission)

. . i
Datacenter! Deskiop Mobile Devices!
Application: Virtual application: MWD
Custom Script App-\ Mo info available
Middeware:

Linux = Satellite
Windows > SCCM
Solaris = PKGinfo

Local application:
Landesk

Operating system:

Linux = Satellite Operating system:

Windows = SCCM Landesk
Solaris = PKGinfo
Infrastructure: e

Manual requests

X Mo info available
to suppliers

Data collection high level scope

The data collection covered the following high-level scope:

C. Mobile Devices

C1. MDM

A. Datacenteri B. DESHDF; ’

Ad. Applications B4. Virtual Applications

I
I

I

I

i

AJ. Middlewares B3. Local Applications :
I

I

I

I

I

I

Al Infrastructure B1. Infrastructure

|

|

|

o
A2, Operating system : B2 Operating System

o

|
______________________ R —

The sources of the inventory therefore covered three majorareas: datacentres, desktops and
mobile devices.

In the next paragraphs, thisfigure will be furtherdetailed with the quality of the coverage for
each area, indicated by the colours used to representit:

Extensive Very limited

information Some information
. information .
available . available
available

Page 37 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

Limitations

A — Datacentre

DIGIT Datacentre team does not directly control all machines under its responsibility (for
example, DIGIT B uses physical / virtual machines not entirely controlled by the DIGIT
Datacentre team). Due to the lack of information on the machines (physical or virtual) out of
such control, such machineswill not fallin the scope of the present study.

A4 - Applications

The applications (hosted or housed) running on the servers present in the DIGIT Datacentre
are mostly not controlled by DIGIT. DIGIT handles the requests to make available tothe users
a specific environment (Infra/OS/middleware) but has no specific rights to consolidate and
manage the applications runningover these environments.

In orderto build and consolidate such inventory, custom scripts may be developed to identify
the applications and the specific libraries installed on these servers, at least for hosted
servers.

At a first stage, a simple script may explore recursivelysome of the usual standard installation

paths to build an initial inventory. At a later stage, the standard installation paths shall be
defined.

A1l - Infrastructure

This layergroups all the possible open source software embedded inside physical devices such
as routers, load balancers, SANs, switches, firewalls...

To build an OSS inventory for such devices, manual requests will need to be addressed to
manufacturers of these devices. In order to optimize the timeframe, only a shortlist of main
devicesand appliances will be subject to these manual requests.

B — Desktop

Only Standard workstations & laptops provided by DIGIT were considered here. The BYOD will
remain out-of-scope. Similarly, some specific workstations are also excluded as OLAF (Anti-
Fraud Office) and JRC (Joint Research Centre).

The list of orders for approved software is stored in the ABAC database, but it is not in an
exploitable state, asit is composed of scanned orders in landscape view.

B1 - Desktop infrastructure

Inthe scope of OSS study, no relevantinformation can be provided even if somei nfrastructure
informationis available through LanDesk inventory tool.

C — Mobile Devices

On mobile devices under provided by DIGIT, only the “Mobilelron” agent is installed through
MDM channel. This platform, in the configuration purchased by DIGIT, does not include any
0SS software. No inventory tool is currently implemented/activated.

As DIGIT does not manage the installed Apps on Mobile devices, this domain will temporarily
remain out-of-scope.

The figure below summarizes the approach adoptedto manage the limitationsto the various
areas mentioned above:

Page 38 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

Figure 18: High-level approach to manage limitations (European Commission)

B. Deskiop C. Mobile Devices|

i

|
|
|
|
|
|
|
|
|
|
|
|
r

. . W . W L

A — Datacenter

Al - Infrastructure

This layergroupsall the possible open source software embedded inside physical devices such
as routers, load balancers, SANs, switches, firewalls...

Currently there are no inventories of the software components (firmware) of those devices.

The recommended methodology is to start such an inventory from the list of devicesand to
contact the vendorsin order to get information about the software they run. As thisisa long
and manual process, it is suggested to perform it based on a very limited set of devices (2 or
3). Even if the output of such a limited sample won’t be exploitable asis, the benefit will be
that the structure and the process of collecting the information will be in place, and the
exercise could be continued later on.

A. Datacente r'i [B. na:sktop‘i [C. Mobile nauicas'i

Ad. Applications | B4. Virtual Applications || C1. MDM |

A3. Middlewares 1| B3. Local Applications || |

A2 Operating system Ji B2. Operating System Ji i
mjl B1. Infrastructure I Jl

Page 39 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

A2 - Operating systems

The following picture describes the situation of the operating systems managed by DIGIT.

Figure 19: Outline of DIGIT-operating systems

Data Center C3 @ Luxembourg

Hosting Housing

Solaris

Windows (Managed by SCCM)

Red Hat Enterprise Linux

Managed by any other mean (other Satellite server, Red Hat Network)
or unmanaged (manual administration)
No visibility

Managed by Digit C3 Satellite

(Satellite can provide a comprehensive list of all software packages
installed on those servers, but not on customers

applications (drupal, ...))

/DnatCe

DIGIT C3 manages a datacentre in Luxembourg. This datacentre provides hostingand housing
services. Among the servers, either in the housed or hosted part, three major operating
systems are supported: Red Hat Enterprise Linux, Solarisand Windows:

e Windows servers are managed by Microsoft System Centre Configuration Manager
(SCCM);

e Solaris servers are manually managed by the team (i.e. no centralised configuration
tool used);

e Linux servers are either managed by the Red Hat Satellite tool from DIGIT C3 (green
box in the figure), or are managed by any other means (pink box on the figure), such
as:

o By another Satellite serveroperated by the customer;

Page 40 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

o Directly connected to the Red Hat Network;

o Or unmanaged (manual administration).

Additionally, other Directorates General also manage their own infrastructure (represented

with the hatched boxes).

DIGIT has no visibility onthe servers represented by the pink and hatched boxes in Figure 19,
as they are not under its control. For these reasons, this methodology will focus on the other

areas:

e Windows systems, expected to run little to no open source software, from SCCM

exports;

e Solarissystems, from manual export (pkginfo command);

e Linux systems managed by DIGIT C3 Satellite server, from the following commands:
spacewalk-report inventory and spacewalk-report system-packages-installed. The
latter command outputs the list of all packages, and of their versions, installed on all
the systems managed by the satellite server. Thisincludes the libraries installed on the

systems.

However, only the software installed using the respective software management tools from
each OS will be collected (i.e. package manager for Linux and Solaris, and Add/Remove
software for Windows). This means that any application added to the system through any

other way will not be reported through these methods. This can include:

e Source code compiled on the system;

e Executable copiedon the system;

e Applicationsdownloaded froma git/svnrepository;

e Webapps for Apache, Tomcat, Weblogic, etc. provided by the users.

A. Datacenter

Ad, Applications :
A3, Middlewares i
A2, Operating system i
Al Infrastructure]i

A3 - Middleware

The middleware layerincludesthe application servers or database servers. As this software is
installed through the usual package manager of the distribution, the scope and limitations of

e e e e e e e e e -

B. Desktop|

B4. Virtual Applications :
B3. Local Applications i
B2. Operating System i
|

B1. Infrastructure

C. Mobile Devices

C1.MDM

the previoussection 0, “Operating systems”, apply to the present section as well.

Page 41 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

A. Datacenter|
Ad, Applications
AJ. Middlewares

A1, Infrastructure

e e e e

B. Desktop|

]
B4. Virtual Applications

B3. Local Applications

BZ. Operating System

B1. Infrastructure

C. Mobile Devices

C1.MDM

[
[
|

L i

A2, Dperating system :
I
|
|

A4 - Applications

The applications are the software hosted by the application server (Tomcat, Weblogic, Apache
and Coldfusion). Those applications are provided by the users, and DIGIT has no visibility on
them. Noinventory currently exists listing the various applications the application servers run.
Thus, the only way to keep this layerin the scope cannot be, as for the other layers, to rely
on existing tools or inventories, but to develop a script that shall discover the applications
inside the application servers.

Based on information gathered from DIGIT C2 technical teams on the standard configuration
of various application server types, the script will establish a list of files, looking in specific
paths (/var/lib/tomcat...). The collected information may include the file name, the libraries,
the version...

However, it is acknowledged that:

e The configuration of application servers may vary from one to another, thus the script
may not see the webapp filesif they are stored in a non-standard path;

e The quality of the script result may not provide the requested information on the
application (licence type, version, etc.). This will be clarified at the early stages of the
testing of the script.

e e e T e T e e

A. Datacenter, B. Desktop; C. Mobile Devices
I]
Ad. Applications I B4. Virtual Applications C1.MDM
Ad. Middlewares B3. Local Applications

BZ. Operating System

A1, Infrastructure B1. Infrastructure

|
|

|

4

AZ. Operating system :
I

|

i ————

B — Desktop

B1 - Infrastructure

Inthis section, “infrastructure” includeslandline phones, printers, copiers, video con ferencing
devicesandsimilaritems. The firmware of those devices has not beenlisted and no inventory
is currently available to rely on, in order to select the open source components. For this
reason, thislayeris not covered by the methodology.

Page 42 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

Ad, Applications
A3, Middlewares
A2, Operating system

A1, Infrastructure

A. Datacenter! |

B. Desktop|
B4. Virtual Applications
B3. Local Applications

BZ. Operating System

B2 — Operating System & B3 — Local Applications

The information on the operating systems and local applicationsinstalled on the workstations

is managed by Landesk, a tool operated by DIGIT A2.

In the case of typical workstation users not having administrative rights on his computer,
there is no risk that a software component not managed by Landesk be installed on the

machines.

However, roughly 10% of users do have administrative rights, and so, can install any software

C. Mobile Devices
1. MDM

on their machine. If they do so, Landesk will discoverit and it will appear ina daily report.

Should the admin user decide to disable Landesk on his computer, the system would be

automatically banned from Active Directory.

For all those reasons, Landesk is considered a reliable source of information on all the

applicationsinstalled on the workstations managed by the DIGIT.

Ad. Applications
AZ. Middlewares
A2. Operating system

Al Infrastructure

A. Datacenter! |

B. Desl-ctnp] [
I

B4. Virtual Applications

B4 — Virtual Applications

Besides the local applications installed on the workstations, DIGIT A2 also provides virtual

applications through the Microsoft App-V technology.

C. Mobile Devices
C1. MDM

The App-V service already can export the catalogue of virtual applications and theirusage.

Ad, Applications
A3, Middlewares
A2, Operating system

A1, Infrastructure

A. Datacenter! |

E. Desl-ctop] [
I

C. Mobile Devices
1. MDM

Page 43 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

C — Mobile devices

C1- MDM

Mobile devices are managed by the MDM system. However, the MDM tool cannot collectall
the applications installed the mobile devices. Hence, there is no current inventory, nor any
current tool in place that would build such an inventory of open source mobile device
applications. Moreover, as far as the MDM security layer is concerned (for instance, securing
e-mail application), and from the customer’s understanding, no substantial open source

software is installed.

Eventually, even if the methodology described in the present chapter could very well cover
the mobile devices, such devices will remain out of scope in the pilotscenario due to the lack

of information available at the issue of this release of the document.

A. Datacenter!
|
Ad. Aprlications '

Al Middlewares

A1, Infrastructure

[
[
|

. i

A2, Operating system :
I
|
|

e e e e

B. Desktop|

]

B4. Virtual Applications
B3. Local Applications

BZ. Operating System

B1. Infrastructure

C. Mobile Devices

Page 44 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

Summary of coverage and readiness of the information sources

Based on the various sources of information that will be used to build the inventory, the
general figure can now be instantiated as follows.

Figure 20: Coverage of inventory with information sources (European Commission)

Mobile Devices

Anotherway to qualify the information sources is to rate to what extentthe information can
be accessed. The followingfigure gives an overview of this situation.

Figure 21: Readiness of the information sources (European Commission)

C. Mobile Devices

>
NNNND
&
8
: g

Page 45 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

ANNEX 2 : METRICS SUSTAINABILITY CRITERIA

Al Introduction

1.1. Objective of this Document and Intended Audience

This documentrepresents the deliverable 6 included within TASK-04: Final metrics definition. The objec-

tives of this documentare:

¢ Toidentify and categorise the aspects that can affect the sustainabilityof FOSS projects;

o To provide a listof the mostrelevantmetrics thatcan be used to evaluate the sustainability of
FOSS projects;

¢ To provide a tool to measurethese metrics.

This documentis addressed to the areas interested in the use ofthese metrics to evaluate the sustaina-

bility of FOSS projects.

1.2. Document Structure

This documentconsists ofthe following sections:

e Section 1: Introduction, which describes the objectives ofthis deliverable and the intended audi-

ence, the structure of the documentand the key success factors.

¢ Section 2: Metrics to analyse the sustainability of FOSS projects, whichidentifies and describes

the metrics and respective categories thatcan be used to evaluate the sustainability of these pro-

jects.

e Section 3: Metric Measurement Approach, which describesthe process for measuring the met-
rics.

1.3. Key Success Factors

All the steps described in Section 2 — Metrics to analyse the sustainabilityof FOSS projects, will ensure

the fulfilmentofthe key success factors related to this deliverable:

¢ FOSSA outcomes provide new tools for CISO to measure the risk level of open source compo-

nents.

1.4. Deliverables

1 Deliverable 4: Analysis of Software Development Methodologies Used in
FOSS communities

Page 46 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

B1 Metrics to Analyse the Sustainability of FOSS Projects

If you are going to rely on a FOSS community contribution-based project for your own project, you want
to ensure that the community will continue to support it throughout the lifecycle of your project. For any
FOSS project, the sustainability of its communities is fundamental for its long term success.

There are many different aspects of a FOSS project that can affect the community sustainability: Good
project management, an effective structure of governance, fair licensing, leadership, community activity
and performance, and supportfrom external entities are keyfor healthyand sustainable FOSS communi-

ties.

In this section, we will identify the aspects thatcan affect the sustainabilityof FOSS projects, and we will
design asetof measurable metrics thatcan be used to evaluate the sustainabilityof these projects

1.5. Identification and Analysis of the Complete Set of Aspects that
Can Affect the Sustainability of the FOSS Projects

In orderto identify and analyse the complete setofaspects thatcan affectthe sustainabilityof the
FOSS projects, we researched and gathered information from several sources:

1 Everis FOSS expert team
2 The websites ofthe communities thatwere analysed in Deliverable 4
3 Relevantwebsites and research papers (see Section 4. Bibliographical References)

The information gathered was analysed and, as aresult, we defined sixcategories of metrics, as

follows:
1. Community Activity
The overall activity of the communityand how it evolves over time is a useful metric category

for all open source communities.

The Community Activity provides afirst view into how much the communityis doing, and it
can be used totrack the differentactivities that the communityconducts, such as:

1. How manypeople took partin a relevant amountofa particular activity, like code devel-
opment, code review, bug fixing?

2. Numberofcommits, releases, tickets

3. Communications activity(Mailing list, posts, forums, chat history)

4. Number ofadoptions/implementations byexternal organisations / communities

5. Software evolution in terms of code, architecture and bug resolution, which is an indicator

of the maturity of the project

Page 47 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

2. Performance

Performance allows you to analyse how processes and people are completing their tasks.

For example, you can measure:

1. Howlong processestake tofinish, like implementing a new feature, fixing a bug, or con-
ducting code review.

2. The time that it takes to resolve or close tickets

3. The time spentconducting code review
3. Quality and Security

Quality and securityare two veryimportantfactors to evaluate for the sustainability of a project,

for two mainreasons:

1. A methodologythat checks the qualityof the code and ensures thatdifferenttypes of
testing are conducted, which will also helpthe projectto be of greaterinterestto the com-

munities.

2. Aprojectthat has included securityfrom the design stage, and implements itthroughout
its lifecycle, has a much better chance to live longer, because the identified securityrisks
will be mitigated.

4. Demographics and Diversity

Demographics give us an overview of the developers and users around a project, and the
companies that engage in it. This includes hosting and support providers, consultancy and
customisation services, and companies thatintegrate the software with other products as part
of solutions.

The number of companies involved in a projectis an importantindicator, since such companies
will clearlyhave a strong interestin the sustainabilityof the software.

A sustainable project accumulates partners and providers of increasing specialisation. Like-
wise, if there are signs of service companies moving away from supporting the project this
may be an indicator ofunderlying problems. As a result, projects thathave beenin production
for a long time have a better chance to stayin the long run.

Another factor to take into consideration is the existing knowledge in the external market, re-
garding the language and platforms usedin the project. This factor is extremely important
because a projectbased on a very specific piece of knowledge thatis not easilyfound or not

of

interestto the outside community of developers may find it difficult to stay in the long temm,
therefore directly affecting the sustainability of the projectas a whole.

Page 48 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

Diversity is an importantfactor in the resilience ofcommunities. In general,the more diverse
communities are—in terms of people or organisations that participate—the more resilientthey
are. For example,when a companydecides to leave a FOSS community, the potential prob-
lems thatthe departure maycause are much smaller ifits employees were contributing 5% of
the work rather than 85%.

For the organisations thatsupportthe project,itis quite useful to look at their diversity in sev-
eralways:

1. Do they operate onlyin one country, or are they geographically spread out? And if so, in
differentcontinents?

2. Are they amixof small and large companies?
3. Dothey target a single sector or multiple industry sectors?
5. Governance
Governance is essential for the sustainabilityand evolution of a FOSS projectand its associ-
ated communities.
It gives information on:
1. Howthe projectis organised
2. Who is whointhe project
3. If aroadmap exists
4. Howwelldocumentedthe projectis

5. The licensing structure
6. FOSS Support

Support, either financial, tangible assets or workforce, is needed to ensure the sustainability
of the FOSS projectand its associated communities. This supportcan take various forms:
1 Financial

2 Infrastructure assets

3 Human Resources

1.6. Design of a Set Of Metrics

The objective ofthis taskis to define a setof metrics with detailed aspects thatwillmake iteasyto measure
the sustainabilityofthe FOSS projects.

After the information gathering and the analysis conducted in task 2.1 Identification and analysis of the
complete set of aspects that can affect the sustainability of FOSS projects, a total of 34 metrics were

Page 49 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

defined and grouped in the sixcategoriesidentified. Table 1 shows the categories with their corresponding

metrics.

Category

Community
Activity

Table 1: Categories with their corresponding metrics

No. Metric Name ‘

1

Code Activity (contributions and contributors)

.

Release History

J

3 Number of Commits

Number of Tickets

Communications (Mailing list, posts, forums, chat history)

Number of Adoptions/Implementations by External Organisations /Communities

1 SW Ewolution (code, architecture, bug/feature)

Programming Language Used

Project Domain (OS, Application SW, IDE, Application servers, Libraries, deskiop
Environments and frameworks). l.e. Apache, Linux, Eclipse, Mozilla, Ant, GNoME,
KDE)

[y

q

Source Code (repositories like CVS/SVN for code base, GitHub, source forge).

Performance

11

Time to Resolve Tickets

4 Time Spentin Code Reviews

[
£

j Pending Work

Qualityand
Security

Security Requirements

Threat Modelling

Security Code reviews

Security Testing

VulnerabilityManagement

Software Development Methodologies

SLA

Category

Demographics
and
Diversity

No. Metric Name ‘

Longevity

Real Knowledge Existentin the marketofthe language and Platforms Used.

3 People Participating

Organisation Participating

Geographicallydistributed user community

Governance

ProjectManagement

Page 50 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

21 ProjectRoadmap

24 Project Structure

29 Documentation

3] Licensing

31 Training

FOSS Support 34 Funding - Monetary

33 Work force

34 Infrastructure assets

1.7. Define Metrics Criteria

In orderto design the forms thatwill be usedto compileall the information for each metric, we defined the

following criteria:

1.

2.

Metric Name: Descriptive name ofthe metric.
Description: whatthe metric should accomplish.

Unit of Measurement: it refers to the way the metric will be measured: a number, a maturitylevel,
etc.

Method: it defines how the metric will be measured.
Measurement: it defines the actual measurementofthe metric, i.e. the maturity level.

Result: the formula applied to measure the metric.

All the information of each metricis documented in the following forms, groupedin one ofthe 6 categories

defined in Task 2.1 Identification and analysis the complete setofaspects that can affect the sustainability
of FOSS projects

Page 51 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

2.3.1. Community Activity

Description

Unit of Measure-

ment

Method

Measurement

Metric Name Code Activity (contributions and contributors)

For a projectto be sustainable itmusthave contributors, and its codebase needs to be
evolving.

One can track this by looking atthe project's revision controlsystem and lookingatthe
pattern of contributions.

This metric measures the amountof committers that contribute to a majority of the com-
mits in the project.

Ratio of contributors

This analysis will be carried out by checking the community website and wiki. The infor-
mation to look for will be the pattern of contributions, to identifythe number of contributors
who submitted 80% of the total contributions in a specific period oftime (mostActiveCon-
tributors 80).

Formulato calculate the ratio of contributors:
Contributorsratio = (mostActiveContributors80 / (mostActiveContribu-

tors80 + 1% x totalContributors)) x (totalContributors/ totalContributors
+10)

1. Very split: Ratio value within the upper 20% of the maximum ratio

2. Split: Ratio value ranked between 79% and 60% ofthe maximum ratio

3. Average: Ratiovalue ranked between 59% and 40% ofthe maximum ratio

4. Dependant: Ratiovalue ranked between 39% and 21% of the maximum ratio

5. Very dependant: Ratio value within the lowest20% ofthe maximum ratio

Page 52 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

Description

Unit of Measure-
ment

Method

Measurement

Metric Name Release History

This metric measures the approach followed for releases thatprovide information on the
update frequency

1. Regular releases (disruption in the cycle might indicate sustainability or governance

issues,inwhichcasethe bestwayto find outis to go into the projectcommunications
areaandseeifthereis anissue)

2. Releasesona*“needtohave"basis. Someprojects makereleases as and whenthey,
feel ready, sothey do not follow an established frequency.

3. Whendo releasesoccur? On the weekends (suggesting a hobby) or during the week|
(suggesting a business)?

Release frequency

Look at the release pattern fora certain period oftime

1 Optimised: formal approach, regular releases are planned and delivered periodi-

2 Managed: informal approach, release is published when development objectives

3 Initial: informal approach, release is published without clear definition criteria.

cally, with the exception of securityfixes.

are achieved.

Page 53 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

Description

Unit of Measure-

ment

Method

Measurement

Metric Name Number Of Commits

The number of commits gives a general idea aboutthe volume ofthe developmentef-
fort.

Number ofcommits

This analysis will be carried out by checking the community website and wiki. The infor-
mation to look for will be the number of code commits done by contributors during - las|
year. The number of mostactive contributors willbe those thatsubmitted 50% of the total

contributions
Formulato calculate the ratio:

Commits Ratio = (nCommitsLastYear /
nNumberCommitsLastYearTopPopularGitHubRepository) *100

1 Very active: Ratio value within the upper51% of the maximum ratio

2 Active: Ratio value ranked between 26% and 50% ofthe maximum ratio

3 Average: Ratiovalue ranked between 6% and 25% ofthe maximum ratio

4 Inactive: Ratio value ranked between 1% and 5% of the maximum ratio

5 Very Inactive: Ratio value within the lowest1% ofthe maximum ratio

Page 54 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

Description

Unit of Measure-

ment

Method

Measurement

Description

Unit of Measure-
ment

Method

Measurement

Metric Name Number Of Tickets

The number oftickets opened provides information abouthow manybugs are reported
or the new functionalities thatare proposed.

Ratio of tickets created

This analysis will be carried out bychecking the community's main tasks orticketreposi-
tory. The information to look for will be when the tickets are created

1 Very active: there are, at least, 10 tickets created in the lastweek.

2 Active: there are, at least, 10 tickets created in the lasttwo weeks.

3 .Average: there are, at least, 10 tickets created in the last month.

4 Inactive: there are, at least, 10 tickets created in the lastthree months.

5 Very Inactive: restof the values

Metric Name Communications (Mailing list, posts, forums, chat history)

The number of messages in mailing lists or posts in forums gives an idea of how many
discussions are being held in public. However, this metric needs to differentiate the types

of activities that are conducted in the communications, which can range from some seri-
ous discussions to unnecessary flame wars (in this case, the communication channel

should notbe accounted for).

Number ofactive communication channels

This analysis will be carried out by checking official communication channels provided by
the community. The information to look for will be the nhumber of active communication

channels used bythe community.

1 Optimised: More than three communication channels are used (differentmailing

lists, IRC, wiki,userforums and web postare used for the project).
2 Managed: At leastthree communication channels are usedin the project.

3 Initial: less thanthree channels are used for exchanging information.

Page 55 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

Description

Unit of Measure-
ment

Method

Measurement

Metric Name Number of Adoptions/Implementations by External
Organisations / Communities

Software downloads provide information aboutthe global interestin the project

Each distribution platform provides its own metrics to describe popularity. For example,
on GitHub, watchers, stars, and forks are the strongestindicators ofa project’s popularity
and use.On WordPress.org, you can see the number ofdownloads a plugin receives, as
well as its average user rating. If distributed via package manager (e.g., Rubygems, NPM),
you can see the number ofinstalls. These indicators show how much the projectis used|

Interestlevel

This analysis will be carried outby checking distribution platforms.

The information to look for will be the identification and measurement of the interest, in
orderto rank it within the levels defined. This level of interestwill be measured bymeans

of doing the following assessment:

Taking the 5 most downloaded/popular projects, an average will be assessed (Av). The
level of popularity (using the Alexa ranking) of the projector the number of downloads

(P) will be divided by that average. The resultis the adoptionsratio (Ra).

Ra=P/Av

1 Very Interesting: The ratio valueis largerthan 1

2 Interesting: The ratio value is between 1 and 0,51

3 Normal The ratio value is between 0,50 and 0,26

4 Disappointing: The ratiovalue is between0,25and 0,11

5 Verydisappointing: The ratio value is smallerthan 0,10

Page 56 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

Description

Unit of Measure-
ment

Method

Measurement

Description

Unit of Measure-
ment

Method

Measurement

Metric Name SW Evolution (code, architecture,bug/feature)

This metric evaluates the evolution level of the software developmentcycle:
1 Codedevelopmentfollows a methodology
2 Improvements were made to the architecture supporting the software development

3 Improvements were made to the bug fixing process

Maturity level

This analysis will be carried outbychecking the communitywebsite and wiki.

The information to look for will be the project's developmentlifecycle and the evaluation
of these three parameters:

1 Codedevelopmentfollows a methodology
2 Architecture Improvements

3 Improvements bug fixing process

1 Optimised: The communityapplies all three parameters
2 Addressed: Theyaccomplish two ofthe three parameters analysed
3 Partially Addressed: They accomplish one ofthe parameters
4 Initial: They don't address anyof the parameters analysed
Metric Name Programming Language Used

This metric evaluates the use ofa stable and widelyused programming language

Use of the programming language

This analysis will be carried out bychecking the communitywebsite and wiki.

The goal is to measure the maturityof the programming language used using TIOBE In-
dexas indicator.

http://www tiobe.com/tiobe_index

1 Very popular: First5 entries from TIOBE
2 Popular: Languagesrankedfrom 6 to 15 from TIOBE
3 Average: Languages ranked from 16 to 20 from TIOBE

4 Unusual: Restofthe languages from TIOBE

Page 57 of 87

http://www.tiobe.com/tiobe_index

The European Commission’s Open Source Software and Tools Inventory Methodology

Metric Name Project Domain (OS, Application SW, IDE, Application serv-
ers, Libraries, desktop Environments and frameworks.
l.e. Apache, Linux, Eclipse, Mozilla, Ant, GNoME, KDE...)

Description The sustainabilityof the projects increases ifthey belong to the mostcommon domains:
Operating Systems (OS), Application Software, Integrated Development Environments|
(IDE), Application Servers, Libraries, Desktop Environments and Frameworks. Exam ples
of projects inthese domainsinclude Linux, Eclipse, Apache, Ant, Mozilla, GNOME, KDE,
and ArgoUML

This metric will evaluate if the projectbelongs to one of these domains.

Unit of Measure- Domain type
ment

Method This analysis will be carried out by checking the community website and wiki. The infor-

mation to look for will be the project's domain:

1. Common: Operating Systems (OS), Application Software, Integrated Development
Environments (IDE), Application Servers, Libraries, Desktop Environments and
Frameworks. Example projects under these domains include Linux, Eclipse, Apache,
Ant, Mozlla, GNOME, KDE, and ArgoUML.

2. Notcommon

Measurement 1 CommonDomain

2 Notcommondomain

Page 58 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

Metric Name Source Code (repositories like CVS/SVN for code base,
GitHub, sourceforge).

Description This metrics measures ifthe developer uses existing repositories to produce qualitycode,

1. Repositories maintaining the code base (e.g., CVS/SVN, change log) are data]
sources thatcontain information on the underlying software and its development pro;
cess, ensuring that everything is commented. Comments are clear and free of mis-

spellings, and the projectincludes extensive tests.

2. External sources, like SourceForge.net, repositories hosting thousands of FOSS pro-

jects
S RVCEEICN Position in Alexa ranking
ment
Method This analysis will be carried outbychecking the Alexa ranking for open source project
hosting:

Fra) 1 . . foo s J~ 4 7= Q Vi = YO 4+ 1 4
TP ITWWW.AITCAA.CUTTTIIOPS IES/LAlCyuUTy C UTTTPUTETSIOUPTETT _SUUILE/FTOUELL _USU g

Measurement 1 Popular Repository: 1st, 2nd, 3rd positions

2 Common Repository: 4th, 5th, 6th positions.
3 Independent Repository: From 7th up to 15th positions.

4 Marginal Repository: Not ranked in the first 15 positions in Alexa ranking.

Page 59 of 87

http://www.alexa.com/topsites/category/Computers/Open_Source/Project_Hosting

The European Commission’s Open Source Software and Tools Inventory Methodology

2.3.2. Performance

Metric Name Time to Resolve Tickets

Description This metric measure the Time it takes to resolve or close tickets. This metric shows how
the projectis reacting to new information that requires another action, such as fixing a
reported bug orimplementinga requestednew feature.

LG REERNEN Average period to resolve a ticket
ment

Method This analysis will be done bylooking atthe software development statistics during a cer-

tain period of time (for example, 6 months)

The formulato calculate the average time is as follows:

Average time = sum(ticket solving time)/number of tickets

Measurement 1 Optimised: Average_time < 5 days

2 Defined: 10days > Average_time >=5 days
3 Managed: 15days > Average_time >=10 days
4 Basic: 15days <= Average_time

5 No data about this

Page 60 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

Description

Unit of Measure-

ment

Method

Measurement

Metric Name Time Spent in Code Reviews

These metric measures the Time spentin code reviews —from the momenta change tg
the code is proposed, to the momentitis accepted—, and it shows how long it takes 0
upgrade a proposed change to the quality standards expected by the community. Other|
metrics deal with how well the projectis coping with pending work, such as the ratio of
new to closed tickets, or the backlog of stillincomplete code reviews. Those parameters
tell us, for example, whether or notthe resources putinto solving issues are enough.

Average time to do code reviews. (Consideringthe minimum number of code reviews

before being accepted orrejected)

This analysis will be done bylooking atthe annual communityreports. The formulato

calculate the average time is as follows:

Average time = sum(code review acceptance time)/number of code reviews

1 Optimised: Average_time <= 3 days

2 Defined: 7days>=Average_time >3 days

3 Managed: 15days>=Average_time >8 days
4 Basic: Average_time > 15 days

5 No data about this

Page 61 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

Description

Unit of Measure-
ment

Method

Measurement

Metric Name Pending Work

This metric measures the ratio of new to closed tickets, orthe backlog ofincomplete

code reviews

This parameteris also an indicator of whether or notthe resources putinto solving is-

sues are enough.

Ratio of new and closed tickets

The ratio between closed tickets (issues) and new ones will be done, if possible, taking

a month as timeframe.

The formulato calculate this ratiois as follows:

SolvingRatio = NewTickets/ClosedTickets * 100

1 Optimised: SolvingRate <=33%
2 Controlled: 33% < SolvingRate <=66%
3 Managed: 66% < SolvingRate <=100%

4 Overloaded: 100% > SolvingRate

Page 62 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

2.3.3. Quality and Security

Description

Unit of Measure-
ment

Method

Measurement

Description

Unit of Measure-
ment

Method

Measurement

Metric Name Security Requirements

This metric measures the existence and maturitylevel of the definition of security re-
quirementsinthe earlystages ofthe SDLC

Maturity level

This analysis will be carried out bychecking the communitywebsite and wiki. The infor-
mation to look for will be the definition of securityrequirements.

If possible, the information will be verified by contacting the community.

1 Optimised: Specificrequirements (defined atthe initial phases)
2 Defined: Within business requirements
3 Managed: Security requirements defined as needed

4 Initial: No Security Requirements

Metric Name Threat Modelling

This metric measures the existence and maturitylevel of threatmodelling

Maturity level

This analysis will be carried out bychecking the communitywebsite and wiki.
The information to look for will be the definition ofthe approach to threat modelling. If

possible, the information will be verified by contacting the community.

1 Optimised: They have threat modelling and countermeasures are implemented or
in the process ofbeing implemented (managed)

2 Managed: No formal threatmodelling, however some countermeasures are imple-

mented (from previous experiences)

3 Initial: No threat modelling

Page 63 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

Description

Unit of Measure-

ment

Method

Measurement

Description

Unit of Measure-

ment

Method

Measurement

Metric Name Security Code Reviews

This metric measures the existence and maturitylevel of securityprocedures such as
code reviews

Maturity level

This analysis will be carried outbychecking the communitywebsite and wiki.

The information to look for will be the definition ofthe securitycode review process (se-
curity code reviews is being responsiblyconducted).

If possible, the information will be verified by contacting the community.

1 Formal: Security code reviews conducted by a specific team
2 Informal: Security code reviews conducted by communitymembers

3 No securitycode reviews conducted

Metric Name Security Testing

This metric measures the existence and maturitylevel of securityprocedures such as
securitytesting (white box /black box)

Maturity level

This analysis will be carried outbychecking the communitywebsite and wiki.

The information to look for will be if the definition ofthe security testing process (security
testing is being conducted, specifying in which SDLC phase).

If possible, the information will be verified by contacting the community.

1 Optimised: Security testing conducted during development
2 Defined: Securitytesting conducted during testing
3 Managed: Security testing conducted before release

4 Basic: Nosecuritytesting or conducted after release (user finds a wlnerability)

Page 64 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

Description

Unit of Measure-

ment

Method

Measurement

Description

Unit of Measure-

ment

Method

Measurement

Metric Name Vulnerability Management

This metric measures the existence and maturitylevel of wulnerabilitymanagement.

Maturity level

This analysis will be carried outbychecking the communitywebsite and wiki.

The information to look for will be the definition ofthe wilnerabilitymanagementprocess,

If possible, the information will be verified by contacting the community.

1 Optimised: Vulnerabilitymanagementconducted bya dedicated team

2 Defined: Vulnerabilitymanagementconductedas partofthe securityteam’s re-
sponsibilities

3 Managed: Vulnerabilitymanagementconductedbya closed group (community
leaders, wlnerabilitystakeholders, trusted members)

Metric Name Software Development Methodology

This metric measures the existence and maturitylevel of the software development
methodologies used

Maturity level

This analysis will be carried outbychecking the communitywebsite and wiki.

The information to look for will be the software developmentmethodologyused in the
project.

If possible, the information will be verified by contacting the community.

1 Optimised: Use of a standard methodology (i.e. Scrum, Agile, Kanban, Waterfall)
2 Managed: Use oftheir own documented methodology

3 Basic: Random,individual contributions

Page 65 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

Metric Name SLA

Description An SLA that defines the parameters for ticket resolution, bug fixing, etc. ..

This metric measures the existence and maturitylevel of an SLA

Unit of Measure- Maturity level

ment

Method This analysis will be carried out bychecking the communitywebsite and wiki. The infor-
mation to look for will be the definition of an SLA in the project.

If possible, the information will be verified by contacting the community.

Measurement 1 Formal: An SLAexists and is managed

2 Informal: An SLA does notexist, however, there is an informal procedure to re-

solve the issues

Page 66 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

2.3.4. Demographics and Diversity

Description

Unit of Measure-

ment

Method

Measurement

Metric Name Longevity

This metric measure how long the projecthas beenina"live" or production status. Some
open source projects are long-lived, leading more conservative organisations to adoptthe
software, and maintain its use for longer, and resulting in a longer-term investmentin its
sustainability.

If a projecthas survived long enough to undergo several technologyreplacementcycles,
this is agood indication thatitis going to be around for years to come. The warning signs
appear when there seems to be subsequent migrations from one project community to
another. Eventually, even a large, mature projectwill startto sufferif this happens.

Start year of the project

This analysis will be carried outbychecking the communitywebsite and wiki. The infor-
mation to look for will be the starting date of the project.

If possible, the information will be verified by contacting the community.

1 Reference Projectin FOSS environment: Project started before 2000
2 Veteran Project: Project started between 2000 and 2005

3 Experimented Project: Project started between 2005 and 2010

4 Adult Project: Projectstarted between 2010 and 2015

5 Beginner Project: Project started after 2015

Page 67 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

Metric Name Real Knowledge Existent in the Market about the Language
and Platforms Used.

Description The PYPL PopularitY of Programming Language Indexis created by analysing how often

language tutorials are searched on Google: the more alanguage tutorial is searched, the|

more popularthe language is assumed to be. It is aleading indicator.

The raw data comes from Google Trends.

Unit of Measure- PYPL index
ment

Method This analysis will be carried out bychecking the website: http://pypl.github.io

Measurement 1 Popular programminglanguage: PYPL share >10%
2 Common programming language: 10% >= PYPL share >5%

3 Specialised programming language: 5%>= PYPL share

Page 68 of 87

http://pypl.github.io/

The European Commission’s Open Source Software and Tools Inventory Methodology

Description

Unit of Measure-
ment

Method

Measurement

Metric Name People Participating

This metric evaluates the differentgroups and number of active members thatare partic
ipating as contributors or supporters ofthis community. Having a diversity of contributors
indicates that there’s a community of users who rely on and care about improving the
software. Contributors need not be only technical. Look for those contributing to docu-
mentation processes, posting on support forums, or filing issues and feature requests.
They can be grouped as:

1 Developers
2 Documenters

3 Supporters

Number of active groups

This analysis will be carried out by checking the community website and wiki. The infor-
mation to look for will be the number of working groups orteams within the community.

If possible, the information will be verified by contacting the community.

1 High: Three or more groups
2 Medium: Two groups

3 Low: One group

Page 69 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

Description

Unit of Measure-

ment

Method

Measurement

Metric Name Organisations Participating

This metric evaluates the number of differentorganisations thatare participating as con
tributors or supporters ofthis community. There are manyopen source projects thatcan
meetthe above mentionedcriteria, butifnone ofthe peers areusingthe project (or haven't
even heard of it), that could be a majorred flag. Many companies proudlyshowcase the
open source projects they're built on, and Google searches can often reveal those that
don’t.

Levels,indicating the number and relevance of supporting organisations

This analysis will be carried outbychecking communitywebsite and wiki. The infor-
mation to look for will be the organisations thatsupportthe project.

If possible, the information will be verified by contacting the community.

1 Level 1: Several big technological organisations participate in the project
2 Level 2: Only one big technological organisation participatesin the project
3 Level 3: Several organisations participate in the project

4 Level 4: One organisation participatesin the project

5 Level 5: No participating organisations

Page 70 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

Metric Name Geographically Distributed User Community

Description This metric evaluates how geographicallyspread outthe user communityis.

SO RVEESIVESIN | mber of continents
ment

Method This analysis will be carried outbychecking the communitywebsite and wiki.

Identify the home country/continentofthe currenttop contributors (100).

Measurement 1 Geographically widely spread: more than 4 continents
2 Geographically spread: Between 2 and 4 continents

3 Geographically concentrated: Less than 2 continents

2.3.5. Governance

Metric Name Project Management
Description This metric measures the existence and maturitylevel of the projectmanagementcycle
Unit of Measure- Maturity level
ment
Method This analysis will be carried outbychecking the communitywebsite and wiki.

The information to look for will be the project's managementcycle conducted bythe

community.

If possible, the information will be verified by contacting the community.

Measurement 1 Optimised: Project Managementis defined and implemented

2 Defined: ProjectManagementis defined and documented, butdoes notcom-

pletely follow the agreed methodology
3 Managed: Projectmanagementis conducted in aninformal way

4 Initial: Project managementis conducted as needed

Page 71 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

Metric Name Project Roadmap

Description

This metric evaluates the existence and maturitylevel of a projectroadmap

Unit of Measure- Maturity level

ment

Method This analysis will be carried outbychecking the communitywebsite and wiki. The infor-

mation to look for will be the community's projectroadmap.

If possible, the information will be verified by contacting the community.

Measurement 1 Optimised: Project roadmap is defined and implemented

2 Defined: Projectroadmapis defined and documented, butdoes notcompletelyfol-
low the agreed methodology

3 No projectroadmap

Metric Name Project Structure

Description This metric evaluates ifthere is a formal structure for the project.
1 Howis the projectorganised?
2 Who is behind the project,interms of number of people?

3 Are they fully committed to the projector is it a partial assignment, done on a volun-

tary basis?
SISO REERE Do cumentation coverage defined in 3 levels
ment
Method This analysis will be carried outbychecking the communitywebsite and wiki. The infor-

mation to look for will be the projectstructure (organogram).

If possible, the information will be verified by contacting the community.

Measurement 1 Optimised: A formal structure with roles and responsibilities is defined, following
an enterprise approach

2 Managed: An informal structure, with roles and responsibilities defined, although it
may not be complete (i.e. no securityroles)

3 Initial: Only leader and contributorroles are defined.

Page 72 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

Description

Unit of Measure-

ment

Method

Measurement

Metric Name Documentation

This metric willindicate the level of the documentation existentin the project.
1 Isitareadme file oradedicated documentation site?

2 Doesithave technical documentation that covers how to install, and specifies re-

quirements, dependencies?
3 Doesithave a usermanual?

4 Doesithave general documentation?

Documentation coverage defined in 3 levels

This analysis will be carried out bychecking the communitywebsite and wiki. The infor-
mation to look for will be the documentation ofthe project.

If possible, the information will be verified by contacting the community.

1 FRull documentation: a) developer guides (code style, code review, securityreview,
developmentenvironment), b) user manual, ¢) technical manual (for system admin{
istrator), d) supportwikis.

2 Partialdocumentation: Only main documentation is developed, user-oriented and
for developers

3 Basic documentation: Only two types of documentation are developed, mainly

user-oriented

Page 73 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

Description

Unit of Measure-

ment

Method

Measurement

Metric Name Licensing

This metric will indicate how serious the projectis in terms of providing intellectual prop-
erty.

1 Is the projectproperlylicensed?
2 Whattype oflicenseis provided?
3 Doesitcontainalicensefile orjustareferenceto a licenseinthe readme?

4 Dofiles contain the proper headings, where required?

Intellectual propertylevel

This analysis will be carried out by checking the communitywebsite and wiki. The infor-
mation to look for will be the license file ofthe project.

If possible, the information will be verified by contacting the community.

1 Optimised: Project has alicense history, up-to-date licensethatcontains proper

headings
2 Defined: Projectincorporates alicense file with proper headings.

3 Managed: Projectincorporates alicense file without proper headings.

Page 74 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

Metric Name Training

Description This metric measures ifthe projecthas provisions for regular training to ensurethe qual-
ity of projectdeliverables

SULRQRIEERUEN T/aining programmes coverage defined in 3 levels
ment

Method Identification ofthe regular training provided bythe project

Measurement 1 Optimised: Projecthas a complete set of documentation for newcomers (How o
contribute, how communityworks, tools),and a mentoris assigned to help them to

get started.

2 Managed: Project has a complete set of documentation for newcomers (How to
contribute, how communityworks, tools)

3 Basic: Project has some informal information for newcomers (How to contribute,

how communityworks, tools)

2.3.6. FOSS Support

Metric Name Funding - Monetary

Description This metric measures ifthe projectis being supported bysome kind of monetaryfunding

from an external source

Unit of Measure- Funding level
ment

Method This analysis will be carried out bychecking the communitywebsite and wiki.

The information to look for will be the "Thanks" or "acknowledgment" partin the pro-

ject/communitywebsite.

If possible, the information will be verified by contacting the community.

Measurement 1 Optimised: Differentexternal organisations fund the projectdirectly, or it is funded

from a private organisation thatdoes business with the FOSS

2 Managed: Differentexternal organisations fund differentprojects in the same

community.

3 Basic: Nofunding by third-partyorganisations, justindividual donations.

Page 75 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

Description

Unit of Measure-

ment

Method

Measurement

Metric Name Workforce

This metric measures ifthe projectis being supported by external volunteers who pro-
vide supportin development, docum entation orissue managementtasks

Workforce level

This analysis will be carried out by checking the communitywebsite and wiki.

The information to look for will be the "Thanks" or "acknowledgment" partin the pro-
ject‘communitywebsite.

If possible, the information will be verified by contacting the community.

1 Optimised: there are paid human resourcesin all areas ofthe project, working ex-
clusivelyin that area. Volunteers can also be partof the project

2 Dedicated: there are paid human resources working in one or more areas ofthe
project. Volunteers can also be partof the project

3 Volunteering: There are only volunteers in the project.

Page 76 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

Metric Name Infrastructure Assets

Description This metric measures ifthe projectis being supported bythe provision of equipmentor
software licenses from an external source

This provision can come from a monetarydonation or an actual assetdonation

SALCINEEETIN Type of infrastructure
ment

Method

This analysis will be carried out by checking the communitywebsite and wiki.

The information to look for will be the "Thanks" or "acknowledgment” partin the pro-

ject‘communitywebsite.

If possible, the information will be verified by contacting the community.

Measurement 1 Dedicated: Communityis the infrastructure owner
2 Mixed: Dedicated and shared infrastructure.

3 Shared: Infrastructure assets are shared with other communities

C1 Metrics measurement approach

Following the criteria defined and agreed upon in Section 2.3 Define Metrics Criteria, we conducted the
following activities to measure the metrics designed in Section 2.2 Design ofa Set of Metrics:

3.1. Tool to measurethe metrics

1. Developmentofan Excel sheet, with all the metrics thatwere defined in Section 2.2 Design ofa Set

of Metrics and all the metrics criteria defined in Section 2.3 Define Metrics Criteria
2. Definition ofa unitof measurementfor each metric

3. Dewelopmentofmethod to measure each metric. This method could be a formulato calculate the

ratio of two values, or data obtained from the project website.

4. Eachmeasurementis normalised, so all the metrics can be analysed on the same scale,in a quan-

titative way

5. To showtheresults in agraphicway, easyto understand, a setof example graphs are produced, to
representthe results in agraphical way.

To view the measurementtool, click on the icon below:

Page 77 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

ijl

Metrics measurement tool

3.2. Frequency of the measurement

Bitergia, a companyfocused on software developmentanalytics, indicates in the article ‘' On the Im portance
of Quarterly Reports: OPNFV and OpenStack as use cases’, thatmeasurementof all the metrics should
be conducted atleaston a quarterlybasis.

3.3. Responsible for the measurement

A team should be appointed to conductthe metric measurementofthe selected FOSS projects.
For successful measurements, the team should have a suitable level of relevantskills and experience.

These skillsinclude:

e Analytical thinking, to notice discrepancies and inconsistencies in available information.

o Communication skills, oral and written, to ensure thatimportantinformation is shared with others

appropriatelyand to communicate results

o Specificknowledge for particular categories, e.g. projectmanagementknowledge for the govern-
ance category, securityknowledge for the Quality and Security category, etc.

e Experience in conducting metrics evaluations
o Teamwork

3.4. Results

Once the measurementis conducted, 8 types of graphs can be produced, as follows:

1. One for each of the categories defined in Section 2.1 Identification and Analysis ofthe Com-
plete Set of Aspects that Can Affect the Sustainabilityof the FOSS Projects

2. A graph comparing each communityagainstall 6 categories.

A sample ofthe graphs is shown in Figures 1 through 7

Page 78 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

Figure 1: Activity

Activity

CodeActivity

(contributions...
100%

Sourcecode .
elease history

(repositories like..

. . Number of
Project domain (

Application... commits
¢ Project1
. == Project2
Programming
Number of tickets
language used
SW evolution Communications
(code,... (Mailing list,...
Adoptions/
implementations by...
Figure 2: Performance
Performance
Pending work
100%
=& Project1
== Project 2

Timeto resolve . .
Timespentin code

tickets

reviews

Page 79 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

Figure 3. Quality and Security

Quality and Security

Security

requirements

SLA
Threat modelling

=== Project 1
uality assurance - .
4 Y Security Code == Project2
Methodologies .
reviews
used
Vulnerability .
ecurity testing
management
Figure 4: Governance
Governance
Project Management
Training Project Roadmag
== Project 1
== Project 2
Licensin Projectstructure

Documentation

Page 80 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

Figure 5. Demographics and Diversity

Demographics and Diversity

Longevity

. Real knowledge
Geographically
o existent in the
distributed user

market of the
communitv === Project1
languageand...
= Project2
Organisations L
People participating
participating
Figure 6. FOSS Support
FOSS Support
Funding - Monetary
=& Project1
== Project 2
Infrastructure assets Work force

Figure 7. Comparison of Projects and Categories

Page 81 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

Figure 8. Average of All Categories that Indicates Overall Sustainability of Analysed Projects

Comparison of Projects and Categories

Quality and Security

Perfomance

Community Activity FOSS Support

Governance

== Project 1
== Project2
== Proyect 3

=3 Proyect4

Average of All Categories that Indicates
Overall Sustainability of AnalysedProjects

80% = 68%

60%

40%

20%

0%

ScoreProject4 Score Project 1 Score Project 3 Score Project 2

B TOTAL

Page 82 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

ANNEX 3: DETAILED DESCRIPTION OF TARGET DATA MODEL

Entity

Name Definition Type

IAppSoftware The entity describes application / app software. Dependent

Criterion The entity describes a quality criterium used to assess if related software belong to the Independent
Critical Software Shortlist.

[CustomSoftware The entity describes software defined ad-hoc. Dependent

DataCenterResources This layer groups all the possible open source software embedded inside physical devices |Dependent
such as routers, load balancers, SANs, switches, firewalls...

Dependencies The entity lists all the software on which a software depends on. Dependent

DevelopmentPlatform The entity describes a software development platform or tool. Dependent

License The entity describes a software license and its terms. Independent

LicenseCompliance The materialised relationship connects a software to the licenses it complies with. Dependent

M obileDevice The entity describes a portable device (smartphone, tablet, etc.). Dependent

M obileSoftware The entity describes software that has been developed for mobile devices. Dependent

OperatingSystem The entity describes an operating system. Dependent

Organization Independent

RuntimeSoftwarePlatform [The entity describes a web server, DBMS, application server or any kind of Dependent
runtime/middleware;

Server The entity describes a computer used for hosting purposes. Dependent

Software The entity describes software. Independent

SoftwareCriteria The materialised relationship connects softwares with their related quality criteria. Dependent

Softwarelnstance The entity represents a deployed software, hence it relates with one or more hosts. Dependent

SoftwareVersion The entity describes the version of a Software. Dependent

SoftwareVulnerabilities The materialised relationship connects a software version with its related detected Dependent
vulnerabilities.

Standard The entity describes a standard, whose characteristics are: openness, transparency and |Independent
being based on consensus.

StandardCompliance The materialised relationship connects a software to the standards it complies with. Dependent

System The entity represents a real machine or device on which software has been installed. Independent

\Vulnerability The entity describes a vulnerability which was found on a specific version of a software. |Independent

Workstation The entity describes a desktop or laptop device. Dependent

IAttribute(s) of "AppSoftware" Entity

Name Definition Is PK Is FK

SoftwareName The name that identifies the software. Yes Yes

IAttribute(s) of "Criterion" Entity

Name Definition Is PK Is FK

CriterionName The name that identifies the criterion. Yes No

Threshold The specific criticality threshold for the criterion. No No

Weight Measures the relevance of the criterion and influences how it is takeninto |No No
account when assessing software criticality.

IAttribute(s) of "CustomSoftware" Entity

Name Definition Is PK Is FK

SoftwareName The name that identifies the software. Yes Yes

IAttribute(s) of "DataCenterResources" Entity

Name Definition Is PK Is FK

SoftwareName The name that identifies the software. Yes Yes

Page 83 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

IAttribute(s) of "Dependencies" Entity

Name Definition Is PK Is FK
DependsOnSoftwareName |The name that identifies a software on which the software under analysis |Yes Yes
depends on.
DependsOnVersionNumber [The name that identifies the version of a software on which the software |Yes Yes
under analysis depends on.
SoftwareName The name that identifies the software. Yes Yes
ersionNumber Reports the version the software is, or was. Yes Yes
IAttribute(s) of "DevelopmentPlatform" Entity
Name Definition Is PK Is FK
SoftwareName The name that identifies the software. Yes Yes
IAttribute(s) of "License" Entity
Name Definition Is PK Is FK
LicenseType IThe specific type of the license, which refers to a specific standard. Yes No
LicenseContact IThe name of the reference person for the license. No No
OrganizationName IThe name that identifies the organisation that defined the license. No Yes
IAttribute(s) of "LicenseCompliance" Entity
Name Definition Is PK Is FK
SoftwareName The name that identifies the software. Yes Yes
LicenseType The specific type of the license, which refers to a specific standard. Yes Yes
IAttribute(s) of "MobileDevice" Entity
Name Definition Is PK Is FK
SystemName The name that identifies the system. Yes Yes
IAttribute(s) of "MobileSoftware" Entity
Name Definition Is PK Is FK
SoftwareName The name that identifies the software. Yes Yes
IAttribute(s) of "OperatingSystem" Entity
Name Definition Is PK Is FK
SoftwareName The name that identifies the software. Yes Yes
IAttribute(s) of "Organization" Entity
Name Definition Is PK Is FK
OrganizationName The name that identifies the organisation. Yes No
Location The physical location (i.e. place) the headquarters of the organisation is No No
stationed.
Description Further details on the organisation. No No
IAttribute(s) of "RuntimeSoftwarePlatform" Entity
Name Definition Is PK Is FK
SoftwareName The name that identifies the software. Yes Yes
IAttribute(s) of "Server" Entity
Name Definition Is PK Is FK
SystemName The name that identifies the system. Yes Yes
IAttribute(s) of "Software" Entity
Name Definition Is PK Is FK
SoftwareName IThe name that identifies the software. Yes No
Description Further details about the software. No No
IsCritical [Tells if the software belongs to the Software Critical Shortlist. No No
IAOWName IThe application owner name. No No
IAOW Position IThe application owner position. No No
Developer [The development entity that designed the software. No Yes
SoftwareType It defines the type of the System: application software, custom software, No No
mobile software, runtime platform, operating system, development
platform or data center resources.
IAttribute(s) of "SoftwareCriteria" Entity
Name Definition Is PK Is FK
SoftwareName The name that identifies the software. Yes Yes
CriterionName The name that identifies the criterion. Yes Yes
Rating The value of the criterion for the specific software. No No

IAttribute(s) of "Softwarelnstance" Entity

Page 84 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

Name Definition Is PK Is FK
SoftwareName The name that identifies the software. Yes Yes
SystemName The name that identifies the system. Yes Yes
\VersionNumber Reports the version the software is, or was. Yes Yes
Size The memory space (in MB) the instance needs. No No
IAttribute(s) of "SoftwareVersion" Entity
Name Definition Is PK Is FK
SoftwareName The name that identifies the software. Yes Yes
IVersionNumber Reports the version the software is, or was. Yes No
IAttribute(s) of "SoftwareVulnerabilities" Entity
Name Definition Is PK Is FK
SoftwareName IThe name that identifies the software. Yes Yes
ersionNumber Reports the version the software is, or was. Yes Yes
ulnerabilityName IThe name that identifies the vulnerability type. Yes Yes

Page 85 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

IAttribute(s) of "Standard" Entity

Name Definition Is PK Is FK
StandardisationBody The organisation that defined the standard. No No
StandardName The name that identifies the standard. Yes No
Description Further details about the standard. No No
StandardisationBody A reference to the Standard content. No Yes
ECContext The European Community Context the standard is related to. No No
Documentation The documentation that the standard have, in text format. No No
ParentStandardName The name that identifies the standard which references or contains this No Yes
standard.
IAttribute(s) of "StandardCompliance" Entity
Name Definition Is PK Is FK
SoftwareName The name that identifies the software. Yes Yes
StandardName The name that identifies the standard. Yes Yes
IAttribute(s) of "System" Entity
Name Definition Is PK Is FK
SystemName The name that identifies the system. Yes No
\Vendor The Organization that produces the system. No Yes
Model The specific model of the machine, comprehensive of producer and No No
version.
RAM It measures the Random Access Memory size of the machine. No No
IsVirtual It tells if the machine is a Virtual Machine. No No
ManagingOrganization The name that identifies the organisation that manages the system. No Yes
SystemType It defines the type of the System: mobile device, server or workstation. No No
SoftwareName The name that identifies the software. No Yes
IAttribute(s) of "Vulnerability" Entity
Name Definition Is PK Is FK
\VulnerabilityName The name that identifies the vulnerability type. Yes No
Source The affected software’s source code. No No
Description Further details on the vulnerability. No No
Impact An indicator of the expected harm received if the vulnerability is actually |No No
exploited.
Remediation The description of the required actions to resolve the vulnerability. No No
IAttribute(s) of "Workstation" Entity
Name Definition Is PK Is FK
SystemName [The name that identifies the system. Yes Yes

Page 86 of 87

The European Commission’s Open Source Software and Tools Inventory Methodology

APPENDIX: ABBREVIATIONS AND ACRONYMS

ABAC / ABAC Asset Corporate Ordering and Asset management
system

BYOD Bring Your Own Device

DIGIT Directorate-General for Informatics

CMDB Configuration Management Data Base

Ccsv Comma-Separated Values

EC European Commission

ETL Extract, Transform and Load

FOSSA Free & Open Source Software Application

HR Human Resources

IT Information Technology

MDM Mobile Device Management

NIST National Institute of Standards and Technology

0sS Operating System

OslI Open Source Initiative

0SS Open Source Software

OSsvDB Open Source Vulnerability Database

PC Personal Computer

RHEL Red Hat Enterprise Linux

SAN Storage Area Network

SCCM System Centre Configuration Manager

SDL Software Development Library

SLA Service Level Agreement

Svn Subversion

Page 87 of 87

