

The European Commission’s

Open Source Software and Tools

Inventory Methodology

 Version 3.0

(Revised Nov 2021)

Study Authors

This document is a one of the deliverables of a European Commission consulting assignment carried

out in 2021 by Trasys Consulting, part of the NRB Group.

Contract: Specific Contract n°479 under Framework Contract n° DI/07624 - ABCIV Lot 3

Request: Funded by ISA² 2020 Sharing and Re-Use Action (2016.31) for DG DIGIT B.3

European Commission

The study was managed by Saranjit Arora (external PM & member of OSPO) and Miguel Diez-Blanco

(Commission PM & OSPO Lead) from DIGIT B.3.002. It was reviewed by Gijs Hillenius (OSPO),
Evangelos Tsavalopoulos (Head of Sector) and others within DIGIT B.3.

Disclaimer

The information and views set out in this publication are those of the author(s) and do not necessarily

reflect the official opinion of the Commission. The Commission does not guarantee the accuracy of
the data included in this document. Neither the Commission nor any person acting on the

Commission’s behalf may be held responsible for the use which may be made of the information
contained therein.

More information on the European Union is available on the Internet (http://www.europa.eu).

© European Union, 2021-2022

The Commission's reuse policy is implemented by Commission Decision 2011/833/EU of 12

December 2011 on the reuse of Commission documents.

Unless otherwise noted (e.g. in individual copyright notices), the reuse of the editorial content on
this website owned by the EU is authorized under the Creative Commons Attribution 4.0

International (CC BY 4.0) licence. This means that reuse is allowed, provided appropriate credit is

given and any changes are indicated.

You may be required to clear additional rights if a specific content depicts identifiable private

individuals or includes third-party works. To use or reproduce content that is not owned by the EU,

you may need to seek permission directly from the respective right holders. Software or documents
covered by industrial property rights, such as patents, trademarks, registered designs, logos and

names, are excluded from the Commission's reuse policy and are not licensed to you.

EUROPEAN COMMISSION

Directorate-General for Informatics

Directorate DIGIT
Unit B3 — DIGIT.B3 Reusable Solutions

E-mail: DIGIT-OSPO@ec.europa.eu

http://www.trasysinternational.com/
https://www.nrb.be/
http://www.europa.eu/
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32011D0833
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32011D0833
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:DIGIT-OSPO@ec.europa.eu

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 3 of 87

TABLE OF CONTENTS

TABLE OF FIGURES.. 5

1. DELIVERABLE OVERVIEW... 6

1.1. Introduction... 6

2. BACKGROUND .. 7

2.1. Open Source .. 7

2.2. Inception and evolution of the inventory methodology.. 7

2.3. Developing the Methodology .. 8

3. METHODOLOGY.. 10

3.1. Why create an inventory .. 10

3.2. The methodology at a glance... 11

3.3. Step 1: Identifying Data Sources.. 12

3.4. Step 2: Acquire data ... 13

3.5. Step 3: Consolidate and load into a database .. 15

3.5.1. Data Model ... 15

3.5.2. Steps to loading data... 15

3.6. Step 4: Analyse, clean and enrich the data ... 16

3.7. Assessment Criteria definition ... 17

3.8. Step 5: Apply the business criticality and vulnerability criteria.. 18

3.9. Step 6: Apply software sustainability criteria ... 21

3.10. Step 7: Produce final results/reports .. 24

3.11. Summary and conclusion on the Inventory Methodology and sample reports... 24

3.11.1.Software inventory procedure from the Inventory Manager’s perspective .. 24

3.11.2.Sample reports.. 25

4. RECOMMENDATIONS, GOOD PRACTICES AND NEXT STEPS.. 30

4.1. Recommendations .. 30

4.2. Good practices .. 31

4.3. The target scenario – first step .. 35

ANNEX 1: AVAILABLE INFORMATION SOURCES FOR EUROPEAN COMMISSION .. 37

Data collection high level scope .. 37

Limitations ... 38

A – Datacentre .. 38

A4 - Applications ... 38

A1 - Infrastructure .. 38

B – Desktop ... 38

B1 - Desktop infrastructure .. 38

C – Mobile Devices.. 38

A – Datacenter .. 39

A1 - Infrastructure .. 39

A2 - Operating systems .. 40

A3 - Middleware.. 41

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 4 of 87

A4 - Applications ... 42

B – Desktop ... 42

B1 - Infrastructure... 42

B2 – Operating System & B3 – Local Applications.. 43

B4 – Virtual Applications .. 43

C – Mobile devices .. 44

C1 - MDM .. 44

Summary of coverage and readiness of the information sources .. 45

ANNEX 2 : METRICS SUSTAINABILITY CRITERIA .. 46

A1 Introduction ... 46

1.1. Objective of this Document and Intended Audience... 46

1.2. Document Structure ... 46

1.3. Key Success Factors .. 46

1.4. Deliverables... 46

B1 Metrics to Analyse the Sustainability of FOSS Projects... 47

1.5. Identification and Analysis of the Complete Set of Aspects that Can Affect the Sustainability of the FOSS
Projects.. 47

1. Community Activity.. 47

2. Performance ... 48

3. Quality and Security ... 48

4. Demographics and Diversity.. 48

5. Governance... 49

6. FOSS Support .. 49

1.6. Design of a Set Of Metrics.. 49

1.7. Define Metrics Criteria ... 51

2.3.1. Community Activity.. 52

2.3.3. Quality and Security ... 63

2.3.4. Demographics and Diversity.. 67

C1 Metrics measurement approach .. 77

3.1. Tool to measure the metrics ... 77

3.2. Frequency of the measurement.. 78

3.3. Responsible for the measurement.. 78

3.4. Results ... 78

ANNEX 3: DETAILED DESCRIPTION OF TARGET DATA MODEL... 83

APPENDIX: ABBREVIATIONS AND ACRONYMS ... 87

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 5 of 87

TABLE OF FIGURES

Figure 1: Evolution of inventory process from pilot to the optimal methodology (target scenario) 9

Figure 2: Methodology Overview diagram ... 12

Figure 3: Phase 1 - Acquiring Data... 13

Figure 4: Phase2 - Data Management Data Model .. 15

Figure 5: Phase 3 - Criteria and Inventory Creation Data Model .. 18

Figure 6: Example of Contributing Activity Metric ... 22

Figure 7: Activity Metric for KeeFox .. 23

Figure 8: Procedure from Inventory Manager's perspective... 24

Figure 9: Grouping of Software Report ... 25

Figure 10: Software by System type Report ... 26

Figure 11: Criticality Ranking Report ... 27

Figure 12: Software by Software Type Report.. 28

Figure 13: Software Dependencies Report ... 28

Figure 14: Critical Shortlist Rating Report (Assessment of top items in the inventoried software against the
criticality mechanism defined in the EU-FOSSA Pilot project) ... 29

Figure 15: Target Data Model Diagram ... 33

Figure 16: Proposed high level to-be approach.. 33

Figure 17: Information sources (European Commission) .. 37

Figure 18: High-level approach to manage limitations (European Commission)... 39

Figure 19: Outline of DIGIT-operating systems... 40

Figure 20: Coverage of inventory with information sources (European Commission).. 45

Figure 21: Readiness of the information sources (European Commission).. 45

file:///C:/Users/User/Desktop/02.Trasys/03.OSSEPS%20Project/Raptakis%20Deliverables/SC479_D02.03%20Updated%20inventory%20methodology_v6.04.docx%23_Toc86315213

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 6 of 87

1. DELIVERABLE OVERVIEW

1.1. Introduction

The European Commission has built and updated their inventory of open source software and

tools they use, on three occasions. The first was in 2016, as part of the EU-FOSSA Pilot project,

the second in 2019 with EU-FOSSA 2, and the third in 2021 as part of this assignment.

With each inventory iteration, the inventory methodology has been refined, including from

its use in 2020, when it was used for the European Council.

Given its potential for wider use, DG DIGIT decided it was worth creating a generic

methodology for building and maintaining an inventory of free and open source software,

processes and tools, for use by any organisation.

The Commission hopes that this version will benefit not only European public services but

also the private sector to create their own open source software and tools inventories. In

return, the methodology would be strengthened and evolve for future use/adoption by other

entities.

The presentation and explanation of the generic methodology begins in Section 2 of the

present document, which briefly defines the term “Open Source Software” and describes,

concisely, the evolution of the methodology up to the optimal and ideal methodology (target

scenario).

From Section 3 onwards, the methodology described in detail using examples from the

European Commission.

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 7 of 87

2. BACKGROUND

2.1. Open Source

For the definition of Open Source Software (OSS), we refer to the Open Source Initiative (OSI)

– https://opensource.org/osd, which states what OSS is and what criteria need to be met for

it. It is also meant to use the definition of free and open source software used by FSFE.

Since this document is only about open source, the term is implied in multiple places when

not written explicitly. Therefore, within the document, the term “software” refers to “Open

Source Software”.

Additionally, in the context of the projects performed under different European Commission

initiatives in relation to open source, OSS is defined as a computer software that is released

under a licence, in which the copyright holder grants users the rights to use, study, change,

and distribute the software and its source code to anyone and for any purpose. OSS might

then be developed in a collaborative public manner. Open Source software is, therefore, a

prominent example of open collaboration, meaning that, any capable user is able

to participate online in its development, thus, making the number of possible contributors

and iteration/version indefinite. Furthermore, the ability to examine the code facilitates

public trust in the software1.

2.2. Inception and evolution of the inventory methodology

The European Commission’s open source inventory methodology was originally created as

part of the 2016 EU-FOSSA Pilot project2, which was formed in the wake of the Heartbleed3

bug to assess potential security flaws hidden within the most critical Open Source Software

that the European Commission was using.

The Pilot Project was followed by a larger Preparatory Project in 2017, namely EU-FOSSA 24,

which used the methodology to create a second version of the inventory. The methodology

was also used to create an inventory for the European Council.

1 https://en.wikipedia.org/wiki/Open-source_software

2 https://joinup.ec.europa.eu/collection/eu-fossa-2/solution/eu-fossa-pilot

3 https://heartbleed.com/

4 https://joinup.ec.europa.eu/collection/eu-fossa-2

https://opensource.org/osd
https://en.wikipedia.org/wiki/Software
https://en.wikipedia.org/wiki/Open-source_license
https://en.wikipedia.org/wiki/Copyright
https://en.wikipedia.org/wiki/Software_distribution
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Open-source_software

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 8 of 87

During these inventory exercises there were, essentially, three tasks executed:

1. Collect information about all the Open Source Software and tools in use.

2. Clean and group the data, apply filters and assessment criteria.

3. Establish a final inventory of the top 50 and 100 software in use, ordered by criticality5.

This process allowed the European Commission to identify the Open Source Software it most

used and relied upon – i.e., its most critical Open Source Software.

This, therefore, allowed the Commission to protect the identified software via security audits

amongst other mechanisms.

2.3. Developing the Methodology

During its journey, from the EU-FOSSA Pilot project to today, the methodology has undergone

significant improvements and has acquired a certain degree of maturity in the three areas

presented below:

1. Software Components Data Collection: Represents the processes, tools and

techniques to collect the component inventory and the mechanisms to process the

consolidation of data with improved speed and accuracy.

2. Assessment Metadata Collection: Represents the processes, tools, and techniques to

collect data for assessment of software such as “sustainability6” data (e.g., using

information about communities behind the specific OSS), “vulnerability” data (about

the known defects within the software) and “business criticality” data (as measured

by the organisation).

3. Filtering and Ranking: Represents the processes, tools, and techniques to interactively

filter/prioritise the inventory based on a set of criteria/thresholds.

5 See section 3.7 and 3.8 for how to identify criticality.

6 See section 3.7 to understand how to establish the sustainability criteria.

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 9 of 87

The figure below summarises the progressive maturity improvements of the core aspects:

Figure 1: Evolution of inventory process from pilot to the optimal methodology (target scenario)

As depicted in the above figure, the optimal methodology should be reached through the

improvements of the three identified areas, namely, the software component data collection,

the assessment metadata collection and the filtering and ranking processes.

The software component data collection, the assessment metadata collection and the

filtering and ranking processes have been already improved across the execution of projects

under different European Commission initiatives in relation to open source.

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 10 of 87

3. METHODOLOGY

From this section onwards, the document describes the methodology developed by the

European Commission for creating an inventory of Open Source Software, processes, and

tools.

3.1. Why create an inventory

What are the benefits for an organisation to spend considerable time and money to create an

inventory of Open Source Software?

Most organisations use a software catalogue – or inventory – of proprietary software which

comes with annual licence renewals and/or software support. Therefore, from one point of

view, it makes sense to also keep an inventory of Open Source Software which has a series of

extra benefits as we’ll see further below. At a minimum, for OSS too, organisations ought to

manage their open source for:

1. Licence compliance;

2. Support contracts.

Additional reasons and benefits

There are several reasons and benefits for creating an inventory of Open Source Software,

processes and tools. Some of these include:

 Identification of what type of software is being used, where and by whom;

 Identification of which software is critical for the organisation, and whether this
software is sustainable7.

 Identification of whether the critical software and related applications are well
supported via support contracts.

 Identification of core/critical software for the organisation, which must be screened
for security vulnerabilities (e.g. the Heartbleed bug, which remained undetected,
caused over €600m in worldwide damage).

 Opportunity to understand the value of Open Source Software to the organisation and
to assess the reciprocal contribution the organisation makes to the open source
community or eco-system.

7 Sustainability here refers to the health of the software in terms of its community, e.g. if the software has only
one person looking after its core development, then clearly its healthy continuity or sustainability would be
questionable.

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 11 of 87

 Opportunity to examine procurement policies in relation to open source.

 Possibility to highlight the usage of open source and examine whether it is used
properly, or whether improvements need to be made internally.

 Visibility on the associated open source processes, tools and frameworks relating to
the software (and not just on the software itself).

 Improved understanding of what is in use and how transparent it is to the public with

the generated code.

 Opportunity to consolidate the business applications built using open source. This
would be a different sort of inventory or catalogue (e.g., PHP is an Open Source

Software, but a corporate website or HR system built with PHP would be a business
application. Potentially, an organisation can have an OSS inventory and an open
source applications catalogue).

 Reuse of software solutions already built and tested, lowering significantly any
potential costs in unnecessary new-builds.

3.2. The methodology at a glance

The methodology has seven key steps:

1. Identify data sources

2. Acquire data

3. Consolidate and load into a database

4. Analyse, clean and enrich the data (e.g. duplicates, names, versions, dependencies

and grouping)

5. Apply the business criticality and vulnerability criteria

6. Apply software sustainability criteria

7. Produce final results/reports

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 12 of 87

Figure 2: Methodology Overview diagram

3.3. Step 1: Identifying Data Sources

Depending on the size of the organisation, Open Source Software data can be found in the
following places:

 Data Centre

 Departmental systems/servers

 Virtual machines

 End user PCs

 Developer PCs

 Cloud systems

 Mobile devices

 Network switches, routers etc.

The types of data can be equally widespread to include:

 Operating systems such as GNU/Linux (various distributions).

 Applications running on servers for performance, messaging, email and connectivity.

 Software development tools and frameworks.

 User desktop tools such as web browsers, utilities, office suites, password managers;
etc.

Step 1/7

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 13 of 87

3.4. Step 2: Acquire data

Each of the identified systems would been requested to provide outputs via a CSV file or other
extracts. The multiple CSV (Comma-Separated Values) files will then be, during step 3,
consolidated and uploaded into a database.

Figure 3: Phase 1 - Acquiring Data

During the execution of Step 2 – Acquire data, the following activities are performed in order
to properly collect data:

a) Brainstorming to agree on the CSV’s mandatory and optional fields

b) Creation of CSV template and examples of the data that need to be

acquired/gathered

CSVs should cover software installed on user workstations and servers on premises or
on cloud (production, QA, etc.). Example/sample files should be provided to the
stakeholder along with the document to fill in.

Example: Since there are mandatory and optional fields included in the CSV template
files, an example CSV template was provided with sample data in order to illustrate

and provide guidance on how to properly fill in all the fields.

c) Share the template CSV file with selected departments

Departments fill in the data into these CSVs and send them back – this should be done,

to the extent possible, via extract applications. In case data are provided via a
database, an accurate definition of every field is expected.

Example: Sharing the template CSV via extract applications is an option, however all
of the data were received via separate emails with attached CSV templates that were
previously provided.

d) Get data via interviews

Step 2/7

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 14 of 87

In certain cases, interviews can provide some meaningful data. Data can be collected
during the interviews directly into CSV files or the interviewed organisations can be

invited to fill them in afterwards and send them back to the Inventory Manager.

Example: There are cases in which, when a CSV template is provided, some additional

clarifications may be required and/or requested for specific fields or columns. Thus,
separate meetings/interviews can be scheduled to go through the CSV template in
order to review and confirm with the stakeholder their understanding on how to

properly include the relevant information.

e) Anonymisation of the information

It is recommended to anonymise the extracted data, prior to consolidating it with data

from other sources. Anonymising data means ensuring it does not show personal
information such as names of users, computer names or file paths etc.

Example: In cases where files received contain personal information, e.g., names of
users or computer names, the relevant fields will be replaced with “XXXXuser”,
“XXXXcomputer” etc.

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 15 of 87

3.5. Step 3: Consolidate and load into a database

Figure 4: Phase2 - Data Management Data Model

3.5.1. Data Model

Once received, the data should be consolidated through a defined data model. Section a) of
the present document contains the sample data model that has been used for the
consolidation of the data received under the Open Source Software Inventory, Security,

Sustainability and Funding Initiatives for European Public Services, a component of the 2020
ISA² Sharing and Re-use action (2016.31).

3.5.2. Steps to loading data

In order to consolidate the database and load the information in it through Extract, Transform
and Load (ETL) tasks, it is important to understand first the received data and doublecheck if
it can be categorised as OSS. It is therefore important to proceed as follows:

a) Understanding the received data

1. Identify the software components.

2. Establish whether the software is open source or not:
Example: To identify and establish that the software is open source or not, an

online research is performed for each software.

3. Filter out non-Open Source Software:
Example: Separated files are produced to divide the Open Source Software files

from the non-Open Source Software ones.

Step 3/7

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 16 of 87

4. Apply any needed data transformation:
Example: The data transformation step is explained in detail in the following

Section 3.6, Step 4.

b) ETL Load

It is useful to use an ETL / BI tool, such as Talend, to load the data received into the
database. A proposed and ideal model exists and has been used during the execution

of the current project related to the Open Source Software Inventory, Security,
Sustainability and Funding Initiatives for European Public Services (see Figure 12).
Nonetheless, it is worth to note that the exact data model is determined by the type
and characteristics of the data received.

3.6. Step 4: Analyse, clean and enrich the data

In this step, we analyse, clean and group the received data as follows:

a) Categorisation of data

Group and categorise Open Source Software. All software that appears with similar

names, should be represented with a single name. Prior to this step, a file is created
in CSV format to gather all the software that is received in the appropriate format and,
at a later stage, will be further analysed.

Decide which software requires this categorisation (e.g. FirefoxA, FirefoxB => Firefox).
As an example, the project team receives, from several stakeholders, software names

such as the ones in the below table that are then grouped, based on our
categorisation, under a “Parent” software.

Software names received

“Child” software

Identified “Parent” software

categorisation

Mozilla Fi

Firefox Mozzil la Fi

Firefox ES

NodeJS

NodeJs

Node.js

NodeJS-

Nodejs

node

*Example taken from the project performed under the Open Source Software Inventory, Security, Sustainability and Funding

Initiatives for European Public Services, a component of the 2020 ISA² Sharing and Re-use action (2016.31).

b) Process evaluation and re-run all steps

All previous steps need to be re-done multiple times, to eliminate the potential
mistakes or risks of duplicates and/or data overlooking. For instance, after the
categorisation that is performed, the project team can always identify room for

adjustments in the grouping of the software, as illustrated in the examples above.

Step 4/7

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 17 of 87

In order to apply all above steps, a new table called ‘Categorisations’ is created –
originating from the table that includes the software names received from the

stakeholders – to check which software belongs to which category.

The table “Categorisations” includes the following grouping of data (sample data):

PARENT SOFTWARE CHILD SOFTWARE NUM_OF_INST

FireFox Firefox 85081

FireFox Mozilla Fi 320

FireFox Mozilla Fi 82

FireFox FireFox 10

FireFox Firefox ES 6

FireFox Selenium 1

*Example taken from the project performed under the Open Source Software Inventory, Security, Sustainability and Funding Initiatives for

European Public Services, a component of the 2020 ISA² Sharing and Re-use action (2016.31).

3.7. Assessment Criteria definition

Before we move on and execute steps 5 and 6 it is crucial – for the appropriate
implementation of the methodology – to proceed with a thorough and accurate definition of
the assessment criteria.

This methodology uses three types of criteria to filter and tag open source data, which are:

1. “Business criticality” criteria: Applied to software components and applications, it
indicates how “heavily” the software is used within the organisation, based on the

number of instances (number of installations) that each software has.

2. “Vulnerability” criteria: Applied to software components and applications, it shows

how secure the software can be, based on its relevance to security and the exposure
it has to users. The exposure is defined by the option of the software to have a user
interface and/or a user contact.

3. “Sustainability” criteria: Applied to open source communities and projects, it indicates
the strength of the software in terms of continuity. To assess and evaluate

sustainability, a set of measurable metrics is defined on the basis of aspects that can
affect and impact the sustainability of the targeted software. In general , such aspects
include:

 Community Activity

 Performance

 Quality and Security

 Demographics and Diversity

 Governance

 Support

In conjunction with the identification of aspects, a Metric Measurement Approach is
developed which describes the process for measuring metrics used to evaluate
sustainability.

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 18 of 87

In our case, the project team has used the set of metrics developed and defined by
WP1 of the EU-FOSSA Pilot project (See Annex 2: Metrics and Sustainability).

3.8. Step 5: Apply the business criticality and vulnerability criteria

Figure 5: Phase 3 - Criteria and Inventory Creation Data Model

a) Number of instances analysis

A software list is created with all relevant categorisations and number of instances
(number of installations) that each software has. The normalisation (normalised score)

is applied on a scale ranging from 0 to 1, based on the most common software
(maximum instances).

Rationale: The more a software is deployed, the more it impacts the infrastructure
and/or user base, and the more damage a vulnerability could cause.

Rating: Normalisation ranges on a scale from 0 to 1, based on the most common
software (maximum instances).

b) Security analysis

The exposure of the software is analysed to define the relevance of the security. A
binary rating is introduced (security-related = 0.5, not security-related = 0).

Rationale: A vulnerability in a component related to a security aspect may increase the
damage due to an exploit. Examples of security-related software are the solutions

Step 5/7

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 19 of 87

meant to secure communication, manage authentication, manage processes and
permissions, etc.

Rating: A binary rating (security-related = 0.5, not security-related = 0).

c) User Interface analysis

We analyse whether the software has a User Interface or not and whether it can be
easily hacked or not. A binary rating is introduced (exposed to users = 1, non-exposed

to users = 0).

Rationale: A vulnerability in a component exposed to the end user (i.e. that offers an

interface to end users) increases the risk of an exploit attacking the software. This
criterion only applies to data centre infrastructure, since workstation users have a
direct login to their machines.

Rating: A binary rating (exposed to users = 1, non-exposed to users = 0).

d) Index calculation

The total score – provided by the sum of the three above scores – is then normalised
on a scale of 0 to 1 (dividing by 2.5, i.e. the sum of the highe st values of the three
criteria).

In this way the “Business Criticality Index” is created.

In the example displayed below, we notice that the initial list of the software names is sorted

based on the number of instances, starting with the software with the maximum number of
instances. The criticality indexes are applied accordingly:

 Interface

 User Contact

 Exposure to users

 Security

As an example, the criticality indexes for the software KeeFox are shown below:

A sample of application scores for the same software group is shown below.

SOFTWARENAME A/A Software NOOFINSTANCES
interface (0 = no

1 = yes)

user contact (0

= no 1 = yes)

Exposure to

Users

Security (0 =

no 1 = yes)

LibreOffice 1 10910 1 0 1 0

Ubuntu 2 1562 1 0 1 0.5

SonarQube 3 1105 1 0 1 0.5

Squash 4 946 1 0 1 0.5

Git 5 742 1 0 1 0

SILL 6 517 1 0 1 0

Criticality Indexes

KeeFox 57 293 1 0 1 0.5

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 20 of 87

And, specifically, for Keefox:

*Examples taken from the project performed under the Open Source Software Inventory, Security, Sustainability and Funding Initiatives

for European Public Services, a component of the 2020 ISA² Sharing and Re-use action (2016.31).

Outcome:

KeeFox has received a score of 1.526856095 (as a result of adding up the metrics “Relative
of instances”, “Exposure to users” and “Relation with security”), putting the software at

the 57th position.

However, to be able to analyse all metrics on the same scale, in a quantitative way, the
scores have to be normalised by dividing them by 2,5 (the sum of the highest values of the
three criticality indexes). The normalised score of KeeFox is therefore of 0.610742438.

Based on this last normalisation process, if all software were sorted by highest score first,
KeeFox would move from its original 57th position to the 20th position. This means that

compared to all the software in the list, KeeFox’s business criticality climbed up 64,91%
making KeeFox appear as a much more important and critical software than initially
analysed.

*Example taken from the project performed under the Open Source Software Inventory, Security, Sustainability and Funding Initiatives

for European Public Services, a component of the 2020 ISA² Sharing and Re-use action (2016.31).

SOFTWARENAME A/A Software NOOFINSTANCES
Instances of the most

common of the list
Instances

Relative # of

instances

Exposure

to users

Relation with

security
Score

Normalized

score

LibreOffice 1 10910 10910 10910 1 1 0 2 0.8

Ubuntu 2 1562 10910 1562 0.143171402 1 0.5 1.643171402 0.657268561

SonarQube 3 1105 10910 1105 0.101283226 1 0.5 1.601283226 0.640513291

Squash 4 946 10910 946 0.086709441 1 0.5 1.586709441 0.634683776

Git 5 742 10910 742 0.068010999 1 0 1.068010999 0.4272044

SILL 6 517 10910 517 0.047387718 1 0 1.047387718 0.418955087

SOFTWARENAME A/A Software NOOFINSTANCES
Instances of the most

common of the list
Instances

Relative # of

instances

Exposure

to users

Relation with

security
Score

Normalized

score

KeeFox 57 293 10910 293 0.026856095 1 0.5 1.526856095 0.610742438

SOFTWARENAME Normalized Score Original A/A Software Current A/A Software Check A/A NOOFINSTANCES

LibreOffice 0.8 1 1 ↑0.00% 10910

Ubuntu 0.657268561 2 2 ↑0.00% 1562

SonarQube 0.640513291 3 3 ↑0.00% 1105

Squash 0.634683776 4 4 ↑0.00% 946

Selenium 0.618515124 7 5 ↑28.57% 505

FireFox 0.618331806 8 6 ↑25.00% 500

CE gravity 0.614812099 11 7 ↑36.36% 474

Rancher 0.614152154 19 8 ↑57.89% 387

exodus-privacy (standalone) 0.61411549 20 9 ↑55.00% 358

Opal 0.613932172 21 10 ↑52.38% 357

SecureFlag Community 0.613455545 29 11 ↑62.07% 355

Yunohost 0.613235564 34 12 ↑64.71% 314

postfix.admin 0.613162236 35 13 ↑62.86% 302

Tomcat 0.611512374 44 14 ↑68.18% 283

Vault 0.611439047 45 15 ↑66.67% 256

ARX Data Anonymization Tool 0.61136572 46 16 ↑65.22% 249

CockroachDB 0.611109074 51 17 ↑66.67% 246

Keycloak 0.611035747 53 18 ↑66.04% 243

Escalation 0.610852429 56 19 ↑66.07% 242

KeeFox 0.610742438 57 20 ↑64.91% 231

CentOS 0.609129239 76 21 ↑72.37% 223

Debian 0.609019248 77 22 ↑71.43% 211

Original Sorting based on Scoring

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 21 of 87

Although a lot of manual work is needed, especially in the cases of new software, this data
management stage should be as automated and parametrised as possible.

A mechanism that will detect and explore only new software additions – and function as a
first stage of control, too – can be useful for the respective future projects.

3.9. Step 6: Apply software sustainability criteria

For the top 30 results, apply the defined sustainability criteria. In our case, the project team

has applied the ones defined in Annex 2: Metrics and Sustainability.

To illustrate how the below sustainability criteria metrics have been defined, the KeeFox
software has been, again, selected as an example.

In the below case, the following metrics have been illustrated:

 Code Activity = Metric 1 from the Community Activity aspect

 Release History = Metric 2 from the Community Activity aspects

 Number of Tickets = Metric 4 from the Community Activity aspect

The below presented results were produced based on online research.

Code Activity = Metric 1 from the Community Activity aspect

*Example taken from the project performed under the Open Source Software Inventory, Security, Sustainability and Funding Initiatives for

European Public Services, a component of the 2020 ISA² Sharing and Re-use action (2016.31).

For example, the criteria of contributions, namely “#contrib who committed 80%” and
“#contrib over the past year”, that belong to the Code Activity (metric 1 from the Community
Activity aspect, were taken from https://www.openhub.net/p/keefox).

Metrics family KeeFox (Kee is the new version)

1 - Code Activity

Source https://www.openhub.net/p/keefox

contrib who committed 80% 1

contrib over past year 1

Contributors ratio 9%

Textual metrics Very dependant

Normalized ratio 0%

Step 6/7

https://www.openhub.net/p/keefox

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 22 of 87

The data is shown in the screenshot below:

Figure 6: Example of Contributing Activity Metric

Release History = Metric 2 from the Community Activity aspect

Another example that could be used to illustrate how the “Release History” (metric 2 from
the Community Activity aspect) was produced is taken from the following link:

https://github.com/kee-org/KeeFox/releases

The value “Managed” is provided since it seems that there is an informal approach, for
release/publication when development objectives are achieved from the release history, as
shown in the screenshot below.

Number of Tickets = Metric 4 from the Community Activity aspect

https://github.com/kee-org/KeeFox/releases

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 23 of 87

To illustrate how the sustainability criteria have been applied and results been produced, the
“Number of Tickets”(metric 4 from the Community Activity aspect) will be used as a last

example.

The defined available values for the “Number of Tickets” are:

1. Very active: there are, at least, 10 tickets created in the last week.

2. Active: there are, at least, 10 tickets created in the last two weeks.

3. Average: there are, at least, 10 tickets created in the last month.

4. Inactive: there are, at least, 10 tickets created in the last three months.

5. Very Inactive: rest of the values.

As depicted in the below screenshot – taken during the online research performed on
https://github.com/kee-org/KeeFox/issues – the last ticket was opened on October 2020.

Therefore, we can consider that the value to be provided is “5 – Very inactive” since it
includes anything over three months old.

Figure 7: Activity Metric for KeeFox

This would produce the following results for metric 4 from the Community Activity aspect:

4 - Number of Tickets

Source

https://github.com/kee-

org/KeeFox/issues

at least 10 tickets over last: more than three months

Textual rating Very inactive

Normalised ratio 0%
*Example taken from the project performed under the Open Source Software Inventory, Security, Sustainability and Funding

Initiatives for European Public Services, a component of the 2020 ISA² Sharing and Re-use action (2016.31).

https://github.com/kee-org/KeeFox/issues
https://github.com/kee-org/KeeFox/issues
https://github.com/kee-org/KeeFox/issues

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 24 of 87

3.10. Step 7: Produce final results/reports

The last part is the creation of the inventory that includes the following tasks:

 Create the software inventory, including a number of custom reports.

 Prepare a publishable version of the inventory.

 Produce a summary and present to management.

3.11. Summary and conclusion on the Inventory Methodology and sample reports

3.11.1. Software inventory procedure from the Inventory Manager’s perspective

Figure 8: Procedure from Inventory Manager's perspective

Data collection is a “pull” process starting with a periodic reminder (for example an e -mail) to

the interested counterparties (the stakeholders owning the relevant data) sent by the process
owner, or Inventory Manager (to be properly identified and appointed). The reminder
message shall indicate a due date and a set of instructions for operators on how to execute

the data extraction and allocation into the repository.

Once the Inventory Manager has received sufficient confirmation from all data providers, s/he
will start the ETL sub-process to populate the inventory database and create the necessary

ETL jobs based on the level of information received.

For the Data Centre, the underlying hypothesis is that all collected data are about known
software. This means that all items treated in the inventory must have been previously
recognised as software components or software products bearing some brand name

(including in-house codes) that can be associated with an external manufacturer (or an
organisational unit) or with a community.

As for desktops, it is expected that the full list of installed software is made available for the

inventory. When the inventory database is populated, the Inventory Manager can manually
adjust the ranking criteria based on a first set of quantitative criteria (possibly excluding some
criteria and/or fixing thresholds) and interactively select the most relevant set of software

applications/components.

Finally, the set of selected software (components) can be enriched with metadata such as
licensing type, known vulnerabilities etc., and be prepared for the final ranking.

“Unknown” software (i.e. software not associated with a community, organisational unit of a
stakeholder, or another identifiable manufacturer) is the first candidate for inspection, but
this is out of the scope of this methodology (see Section 4, “Recommendations and Next

Step 7/7

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 25 of 87

Steps”). However, some additional processing can be applied to software recognised as open
source, to decide how to contribute to their OSS communities.

One inventory use case could be to obtain a shortlist of critical software components, by
applying criteria to the inventory items in order to rank them by criticality.

The final ranking is performed by the Inventory Manager, adjusting the previous ranking

based on a second set of qualitative criteria (sustainability).

3.11.2. Sample reports

The inventory consists of a number of Custom Reports based on all available data. These
Custom Reports are as follows:

a. Grouping of Software

Figure 9: Grouping of Software Report

*Example taken from the project performed under the Open Source Software Inventory, Security, Sustainability and Funding Initiatives for

European Public Services, a component of the 2020 ISA² Sharing and Re-use action (2016.31).

b. Software by System Type

PARENTSOFTWARE SOFTWARENAME NUM_OF_INST EXTENSION OPEN SOURCE FLAG

FireFox Firefox 85081 TRUE

LibreOffice libreoffice 85080 TRUE

Thunderbird Thunderbird 85080 TRUE

adoptopenJDK adoptopenJDK 85000 TRUE

openSC openSC 85000 TRUE

ssh ssh 85000 TRUE

VLC VLC Media Player 85000 TRUE

VLC vnc 85000 TRUE

Ubuntu Ubuntu LTS 78000 TRUE

luks luks 30000 TRUE

strongswan strongswan 30000 TRUE

LibreOffice LibreOffice 10493 TRUE

Debian Debian 4746 TRUE

Syslog-ng Syslog-ng 4742 TRUE

squid squid 4501 TRUE

apache apache 4500 TRUE

bacula bacula 4500 TRUE

cups cups 4500 TRUE

dovecot dovecot 4500 TRUE

naemon naemon 4500 TRUE

nginx nginx 4500 TRUE

php php 4500 TRUE

samba samba 4500 TRUE

Ubuntu Linux Ubuntu OS 1262 TRUE

Haproxy Haproxy 1000 TRUE

Python python 1000 TRUE

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 26 of 87

Figure 10: Software by System type Report

*Example taken from the project performed under the Open Source Software Inventory, Security, Sustainability

and Funding Initiatives for European Public Services, a component of the 2020 ISA² Sharing and Re-use action

(2016.31).

PARENTSOFTWARE SYSTEMTYPE NUM_OF_INST

7zip Server 1

Workstation 127

(blank) 76

Acceleo (blank) 304

achat (blank) 1

adoptopenJDK Workstation 85000

Aegisub (blank) 1

aide-sociale (blank) 3

AjaxControlToolkit Server 1

Akelpad Server 1

ALCASAR (blank) 1

ALM (blank) 1

Alternatiff (blank) 2

Anaconda Server 1

Android (blank) 1

Angular Mobile device 1

Server 2

Ansible Server 3

(blank) 225

apache Server 4605

Apache SolR Server 1

Apache Ant Server 1

Apache Ignite Server 1

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 27 of 87

c. Criticality Ranking

*Example taken from the project performed under the Open Source Software Inventory, Security, Sustainability and Funding Initiatives for
European Public Services, a component of the 2020 ISA² Sharing and Re-use action (2016.31).

Additionally, the inventory consists of a number of Custom Reports based on the top 30

results. These Custom Reports are as follows:

Figure 11: Criticality Ranking Report

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 28 of 87

a. Software by Software Type

Figure 12: Software by Software Type Report

 *Example taken from the project performed under the Open Source Software Inventory, Security, Sustainability and Funding Initiatives for
European Public Services, a component of the 2020 ISA² Sharing and Re-use action (2016.31).

b. Software Dependencies

Figure 13: Software Dependencies Report

Top Open Software No of Instances Software Type

LibreOffice 10910 Application software/Tool

Ubuntu 1562 Operating system

SonarQube 1105 Application software/Tool

Squash 946 Application software/Tool

Selenium 505 Runtime software platform

FireFox 500 Application software/Tool

CE gravity 474 Application software/Tool

Rancher 387 Development platform/framework

exodus-privacy (standalone) 358 Mobile software

Opal 357 Operating system

Tomcat 283 Runtime software platform

Vault 256 Application software/Tool

ARX Data Anonymization Tool 249 Application software/Tool

CockroachDB(not fully open-sourced, must purchase a license) 246 Runtime software platform

Keycloak 243 Application software/Tool

Escalation 242 Application software/Tool

KeeFox(Kee is the new version) 231 Application software/Tool

CentOS 223 Operating system

Debian 211 Operating system

Syslog-ng 207 Libraries

Rudder 189 Application software/Tools

ClamAV 184 Application software/Tool

Centreon 183 Application software/Tool

Components Number of Dependencies Components Number of Dependencies

FireFox 38 glibc 5

exodus-privacy (standalone) 31 zlib 5

CE gravity 22 glib2 4

Opal 18 bash 4

LibreOffice 17 libX11 3

Ubuntu 16 gtk2 3

Squash 12 systemd 2

Rancher 10 libXext 2

SonarQube 7 libselinux 2

Selenium 7 freetype 2

Grand Total 178 log4j 2

gdk-pixbuf2 2

libffi 2

bcmail-jdk14 2

commons-beanutils 2

lua 2

libXrender 2

gtk3 2

fontconfig 2

hamcrest 2

nss 2

Chart.yml 1

xml-apis 1

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 29 of 87

*Example taken from the project performed under the Open Source Software Inventory, Security, Sustainability and Funding Initiatives for

European Public Services, a component of the 2020 ISA² Sharing and Re-use action (2016.31).

c. Critical shortlist Rating (34 different criteria will be applied)8.

Figure 14: Critical Shortlist Rating Report (Assessment of top items in the inventoried software against the

criticality mechanism defined in the EU-FOSSA Pilot project)

*Example taken from the project performed under the Open Source Software Inventory, Security, Sustainability and Funding Initiatives for

European Public Services, a component of the 2020 ISA² Sharing and Re-use action (2016.31).

It should be noted that the set of sustainability criteria contains a number of qualitative

criteria previously defined by the Inventory Manager, on the basis of a thoroughly designed
and described Metric Measurement Approach. Therefore, in order to produce more reliable
results, the metrics should be adjusted accordingly for each project (i.e. removed or replaced
with a more quantifiable set of options, depending on its specifics and characteristics).

8 See Deliverable 6 - Final Metrics Definition (europa.eu).

Metrics family LibreOffice Ubuntu SonarQube Squash Selenium FireFox CE gravity

Source https://www.libreoffice.org/

https://www.openhub.ne

t/p/ubuntu

https://www.openhub.ne

t/p?query=SonarQube

https://www.openhub.ne

t/p?query=squash

https://github.com/Selen

iumHQ/selenium.git

https://www.openhub.net/p/fir

efox

https://github.com/gravit

ational/gravity.git

contrib who committed 80% 4 1 11 4 5 240 7

contrib over past y 75 12 58 25 55 5226 23

Contributors ratio 74% 49% 81% 67% 76% 82% 67%

Textual metrics Split Average Very split Split Split Very split Split

Normalized ratio 75% 50% 100% 75% 75% 100% 75%

source

https://wiki.documentfoundat

ion.org/ReleasePlan

https://wiki.ubuntu.com/

Releases

https://docs.sonarqube.

org/latest/setup/upgrade-

notes/

https://www.squashtest.

com/community-

roadmap-releases-

tm?lang=en

https://github.com/Selen

iumHQ/selenium/releas

es

https://www.mozilla.org/en-

US/firefox/releases/

https://goteleport.com/gr

avity/docs/changelog/

Textual metrics Managed Optimized Managed Managed Managed Optimized Managed

Normalized ratio 50% 100% 50% 50% 50% 100% 50%

commits last year 6789 117 1183 812 834 53205 402

commits last year top

popular OpenHub Repository 884 884 884 884 884 884 884

Ratio 768% 13% 134% 92% 94% 6019% 45%
Textual metrics Very active Average Very active Very active Very active Very active Active

Normalized ratio 100% 50% 100% 100% 100% 100% 75%

Source

https://bugzilla.mozilla.org/b

uglist.cgi?short_desc=libreof

fice&query_format=advance

https://bugzilla.mozilla.o

rg/buglist.cgi?short_des

c=ubuntu&short_desc_t

https://jira.sonarsource.

com/issues/

https://bugzilla.mozilla.o

rg/buglist.cgi?short_des

c=squash&short_desc_

https://bugzilla.mozilla.o

rg/buglist.cgi?short_des

c_type=allwordssubstr&

https://bugzilla.mozilla.org/qu

ery.cgi

https://bugzilla.mozilla.o

rg/buglist.cgi?resolution

=---

at least 10 tickets over last: last week last week last week more than three months last month last week more than three months

Textual rating Very active Very active Very active Very inactive Average Very active Very inactive

Normalized ratio 100% 100% 100% 0% 50% 100% 0%

Textual rating Optimized Optimized Optimized Optimized Managed Optimized Initial

Normalized ratio 100% 100% 100% 100% 66% 100% 33%

1 - Code Activity

2 - Release History

3 - Number of Commits

4 - Number of Tickets

5 - Communications

https://joinup.ec.europa.eu/sites/default/files/inline-files/DLV%20WP1%20-%2006%20-%20Final%20Metrics%20definition_published(2).pdf

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 30 of 87

4. RECOMMENDATIONS, GOOD PRACTICES AND NEXT STEPS

As mentioned in chapter 2, to reach its full maturity, the methodology should improve the

three identified areas to:

1. Enable a direct and automated way to collect, in real -time, the data from the

system/servers of the various stakeholders and, therefore, improve the completeness

of the inventory since this would not depend on a manual selection of information

provided by the stakeholders.

2. Enable an automated system to collect assessment metadata through international

databases.

3. Use a Business Intelligence tool to proceed with the steps currently done manually via

spreadsheet files.

An example of a targeted/target scenario, implementing an updated and optimal

methodology, is described in paragraph 4.3 - “The target scenario – first step” and uses a

public international organisation as “implementer” of a further mature/optimal

methodology.

The target scenario is used as an example and for illustration purposes only, and recognises

that each public or private administration will have its own target scenario and will , therefore,

adapt the methodology to its own context and needs.

The below sections provide recommendations and good practices to apply while implement-

ing the methodology as well as a projection on how the optimal methodology could be im-
plemented by an organisation.

4.1. Recommendations

Based on the analysis performed in the framework of the present project, namely the Open

Source Software Inventory, Security, Sustainability and Funding Initiatives for European Public

Services, some recommendations are hereby provided on future actions that stakeholders, or

any future interested Inventory Manager, may implement to enhance the efficiency and

effectiveness of the Inventory Methodology and its related processes:

 Continue along the guidelines set by this project, enlarging its scope and consolidating

processes and IT systems:

o Industrialise the methodology described in these pages through the

development of a maximum of automated processes;

o Industrialise the processes and information system elements introduced in this

document, transforming them in an “industrial” solution (see section 5.2).

 Adopt security practices into the software development/adoption lifecycle:

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 31 of 87

o Select and install only secure and supported open source software;

o Actively maintain an accurate list of OSS components and applications;

o Identify vulnerabilities during development;

o Alert product/solution managers of potentially vulnerable applications based

on the track of new vulnerabilities.

 Foster the adoption of a common Configuration Management Database (CMDB)

consolidating all the different inventories.

 Apply and implement, to the extent possible, the good practices presented in the next

section.

4.2. Good practices

a) Target data model definition

To consolidate the received data, the Inventory Manager should use a data model. The
presented Target Data Model is an ideal conceptual, object-oriented model. Therefore, it is

technology-independent and is not intended to be an image of the database the inventory
tool will use. Thus, entities are not mapped one-to-one in database tables.

The below presented model is recommended by the project team as a good practice and has
been used and verified during the performance of the current project related to the Open

Source Software Inventory, Security, Sustainability and Funding Initiatives for European Public
Services.

The model describes:

 Entities: coherent aggregates of information, related to real-world objects, ideas or

contexts, which are commonly stored into database tables.

 Attributes: simple pieces of information (text, numbers, lists, etc.) belonging to an
entity, which are commonly stored into database table columns.

 Relationships: connections that represent hierarchy or interaction between entities.

Each entity has the following properties:

 Name: a sequence of words that identifies the entity.

 Description: a short phrase that explains the role and information content of the
entity.

 Requirements: a list of the project requirements that led to the definition of the
entity.

 Sources: a list of the information sources from which the entities’ information is
gathered (e.g. Landesk, App-V, Satellite).

 Type: if the entity is a specialisation of another entity, the value is “Dependent”; else,
the value is “Independent”.

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 32 of 87

Attributes are organised by entities. Each attribute has the following properties:

 Name: a sequence of words that identifies the attribute.

 Definition: a short phrase that explains the role and information content of the
attribute.

 Required: if the field required or not.

 Is PK: if the attribute is used to identify the entity it belongs to.

 Is FK: if the attribute references an external entity.

The model is built around the Software and System core entities. The Software entity
aggregates all the information required to perform the software inventory, software

attributes and meta-data, while the System entity contains the information related to the
systems, physical or virtual, where the software is deployed. The data for the Software entity
are manually and locally managed by the Inventory Manager, while the ones that belong to

the System entity are automatically loaded from external systems (Landesk, App-V, Satellite
and other CMDBs). A third entity, SoftwareInstance, represents the software that has been
actually deployed, and works as a bridge between the two.

The Software entity is related to versions and licences. Each software version is tied to its
evaluation criteria, which are evaluated to assess if the software must be included in the

Critical Software Shortlist. The software classes that were declared as in-scope in the
requirements are also modelled as specialisations of the Software entity.

The System entity is divided into workstations, servers and mobile devices. The first two
system types are in-scope, while the last one is currently under evaluation. It will be excluded

from the Data Model if definitively assessed as out-of-scope.

Both Software and System entities are related to the standards they comply with. As the

standard inventory is a project requirement, a Standard entity contains all the information
gathered from the information sources and can be considered as a fourth core entity.

Organisations that own or produce software, standards and/or systems are also related to
the four main entities that have been modelled.

Details about project requirements are mapped to entities that answer to those
requirements. The same operation is performed for data sources that have been currently

identified as available.

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 33 of 87

Figure 15: Target Data Model Diagram

More detailed information about the model is provided in Annex 3: Detailed Description of
Target Data Model.

b) Focus on the internal software development/acquisition processes by adopting best

practices and solid solutions.

Figure 16: Proposed high level to-be approach

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 34 of 87

A best practices solution would combine elements of TRUST, VERIFICATION, and

MONITORING:

1 –TRUST means providing developers and architects with a way to choose open source

components that are free of known vulnerabilities and have active community support. This

is a proactive step that reduces risks downstream in the software development process, and

is the most cost-effective means of risk reduction.

2 – VERIFICATION means maintaining an accurate inventory of open source software and

being able to map all its known vulnerabilities, in any and all applications, at any point in the

SDL.

3 – MONITOR means being able to monitor the released code for newly discovered

vulnerabilities and alert the right people for remediation. With over 4,000 new vulnerabilities

each year, a comprehensive solution should be to continuously monitor the constant stream

of new vulnerabilities and automatically notify the administrator of any new vulnerabilities in

the open source components used in deployed applications, including which applications use

the code, how critical the vulnerability is, and how to remediate it.

c) Handling “unknown” software

An additional, and very important, aspect is the enlargement of the software component

scope to include “unknown” software. In such cases, the added value of the “target” scenario

can be significantly higher than the previous relative projects, including this one.

As described in the data collection section9, this project is based on the hypothesis that only

“known” software components/applications will be dealt with.

Management of “unknown” software is a strong constraint and a complex aspect. It requires

the handling of large amounts of raw inventory data. Moreover, “unrecognised objects” have

to be collected and matched with some “known” data patterns in order to understand their

nature (source code, executable, scripts etc.), and professional tools will be needed to scan

and recognise them.

Despite the complexity of the abovementioned process, from a security point of view, the

most interesting elements are the “unknown” software components, which is why the project

team strongly recommends considering this aspect as a priority in future projects.

9 Section 3.4. Step 2 : Acquire data

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 35 of 87

4.3. The target scenario – first step

This section serves as an example of a target scenario, which uses a public international

organisation (PIOX) as “implementer” of a more mature/optimal methodology.

The target scenario is used as an example – and for illustration purposes only – and recognises

that each public or private administration will have its own target scenario and will adapt the

methodology to their own context and needs.

The first step after the conclusion of this project should be to start a programme to reach the

“target” scenario, with robust and agreed processes and an industrial-grade IT support

solution.

The suggested “target” scenario is as follows:

 PIOX makes recurring automatic inventories to collect the software components that

are in place (development and production);

 PIOX has a consolidated CMDB which is regularly enriched with inventory data;

 PIOX has a consolidated repository where it stores a “reference” copy of any in-house

developed or downloaded/used software (source, executable, data etc.);

 On a regular basis, PIOX conducts automatic verifications that code present on the

systems corresponds to the “reference” copy;

 PIOX has a policy to apply a form of licensing to its in-house developed software and

has a policy to evaluate whether to submit this software to a public community or to

contribute to an OSS initiative;

 PIOX has a policy to foster employees’ contribution to open software communities

with the products of their work;

 On a regular basis, PIOX scans the code repository with appropriate tools to find any

possible “alien” or “unlicensed” software component.

A detailed analysis regarding the tools that can be used to support the open source inventory

and their ranking is the objective of another specific deliverable. Below, the overall features

of the “target” processes/solution are presented:

1. Industrial automatic discovery and inventory tool, able to collect all the information

about software components;

2. Automatic inquiry of large internet databases to find additional metadata (licensing

form, community dimension, vulnerabilities etc.);

3. Semi-automatic semantic web engine capable to enrich an initial list of standards;

4. Graphic editing of the standard taxonomy;

5. “Business Intelligence” dashboard with customisable ranking criteria/rules;

6. Automatic publishing of the inventory and ranking as open-data on http://open-

data.europa.eu/.

The “target” recurring processes are therefore the following:

http://open-data.europa.eu/
http://open-data.europa.eu/

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 36 of 87

1. Automatic and semi-transparent Open Source Software component inventory and

classification.

2. Automatic inquiry of internet databases.

3. Semi-automatic ranking.

4. Selection of candidates for the code review.

This ideal situation will be enriched and described as the project progresses and will,

eventually, provide a set of pragmatic recommendations to improve procedures, tools and
data quality.

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 37 of 87

ANNEX 1: AVAILABLE INFORMATION SOURCES FOR EUROPEAN COMMISSION

To help in understanding the process of collecting open source information, it may be useful

to see what the European Commission did. For the EC, the following information sources were
identified:

Figure 17: Information sources (European Commission)

Data collection high level scope

The data collection covered the following high-level scope:

The sources of the inventory therefore covered three major areas: datacentres, desktops and

mobile devices.

In the next paragraphs, this figure will be further detailed with the quality of the coverage for
each area, indicated by the colours used to represent it:

Extensive
information

available

Some
information
available

Very limited
information

available

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 38 of 87

Limitations

A – Datacentre

DIGIT Datacentre team does not directly control all machines under its responsibility (for
example, DIGIT B uses physical / virtual machines not entirely controlled by the DIGIT
Datacentre team). Due to the lack of information on the machines (physical or virtual) out of

such control, such machines will not fall in the scope of the present study.

A4 - Applications

The applications (hosted or housed) running on the servers present in the DIGIT Datacentre
are mostly not controlled by DIGIT. DIGIT handles the requests to make available to the users

a specific environment (Infra/OS/middleware) but has no specific rights to consolidate and
manage the applications running over these environments.

In order to build and consolidate such inventory, custom scripts may be developed to identify
the applications and the specific libraries installed on these servers, at least for hosted

servers.

At a first stage, a simple script may explore recursively some of the usual standard installation

paths to build an initial inventory. At a later stage, the standard installation paths shall be
defined.

A1 - Infrastructure

This layer groups all the possible open source software embedded inside physical devices such
as routers, load balancers, SANs, switches, firewal ls…

To build an OSS inventory for such devices, manual requests will need to be addressed to
manufacturers of these devices. In order to optimize the timeframe, only a shortlist of main
devices and appliances will be subject to these manual requests.

B – Desktop

Only Standard workstations & laptops provided by DIGIT were considered here. The BYOD will
remain out-of-scope. Similarly, some specific workstations are also excluded as OLAF (Anti-

Fraud Office) and JRC (Joint Research Centre).

The list of orders for approved software is stored in the ABAC database, but it is not in an

exploitable state, as it is composed of scanned orders in landscape view.

B1 - Desktop infrastructure

In the scope of OSS study, no relevant information can be provided even if some i nfrastructure

information is available through LanDesk inventory tool.

C – Mobile Devices

On mobile devices under provided by DIGIT, only the “MobileIron” agent is installed through

MDM channel. This platform, in the configuration purchased by DIGIT, does not include any
OSS software. No inventory tool is currently implemented/activated.

As DIGIT does not manage the installed Apps on Mobile devices, this domain will temporarily
remain out-of-scope.

The figure below summarizes the approach adopted to manage the limitations to the various
areas mentioned above:

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 39 of 87

Figure 18: High-level approach to manage limitations (European Commission)

A – Datacenter

A1 - Infrastructure

This layer groups all the possible open source software embedded inside physical devices such
as routers, load balancers, SANs, switches, firewalls…

Currently there are no inventories of the software components (firmware) of those devices.

The recommended methodology is to start such an inventory from the list of devices and to
contact the vendors in order to get information about the software they run. As this is a long
and manual process, it is suggested to perform it based on a very limited set of devices (2 or

3). Even if the output of such a limited sample won’t be exploitable as is, the benefit will be
that the structure and the process of collecting the information will be in place, and the
exercise could be continued later on.

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 40 of 87

A2 - Operating systems

The following picture describes the situation of the operating systems managed by DIGIT.

Figure 19: Outline of DIGIT-operating systems

DIGIT C3 manages a datacentre in Luxembourg. This datacentre provides hosting and housing
services. Among the servers, either in the housed or hosted part, three major operating

systems are supported: Red Hat Enterprise Linux, Solaris and Windows:

 Windows servers are managed by Microsoft System Centre Configuration Manager
(SCCM);

 Solaris servers are manually managed by the team (i.e. no centralised configuration

tool used);

 Linux servers are either managed by the Red Hat Satellite tool from DIGIT C3 (green

box in the figure), or are managed by any other means (pink box on the figure), such
as:

o By another Satellite server operated by the customer;

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 41 of 87

o Directly connected to the Red Hat Network;

o Or unmanaged (manual administration).

Additionally, other Directorates General also manage their own infrastructure (represented
with the hatched boxes).

DIGIT has no visibility on the servers represented by the pink and hatched boxes in Figure 19,
as they are not under its control. For these reasons, this methodology will focus on the other
areas:

 Windows systems, expected to run little to no open source software, from SCCM
exports;

 Solaris systems, from manual export (pkginfo command);

 Linux systems managed by DIGIT C3 Satellite server, from the following commands:
spacewalk-report inventory and spacewalk-report system-packages-installed. The
latter command outputs the list of all packages, and of their versions, installed on all
the systems managed by the satellite server. This includes the libraries installed on the

systems.

However, only the software installed using the respective software management tools from
each OS will be collected (i.e. package manager for Linux and Solaris, and Add/Remove
software for Windows). This means that any application added to the system through any
other way will not be reported through these methods. This can include:

 Source code compiled on the system;

 Executable copied on the system;

 Applications downloaded from a git/svn repository;

 Webapps for Apache, Tomcat, Weblogic, etc. provided by the users.

A3 - Middleware

The middleware layer includes the application servers or database servers. As this software is
installed through the usual package manager of the distribution, the scope and limitations of

the previous section 0, “Operating systems”, apply to the present section as well.

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 42 of 87

A4 - Applications

The applications are the software hosted by the application server (Tomcat, Weblogic, Apache
and Coldfusion). Those applications are provided by the users, and DIGIT has no visibility on

them. No inventory currently exists listing the various applications the application servers run.
Thus, the only way to keep this layer in the scope cannot be, as for the other layers, to rely
on existing tools or inventories, but to develop a script that shall discover the applications

inside the application servers.

Based on information gathered from DIGIT C2 technical teams on the standard configuration
of various application server types, the script will establish a list of files, looking in specific
paths (/var/lib/tomcat…). The collected information may include the file name, the libraries,
the version…

However, it is acknowledged that:

 The configuration of application servers may vary from one to another, thus the script
may not see the webapp files if they are stored in a non-standard path;

 The quality of the script result may not provide the requested i nformation on the
application (licence type, version, etc.). This will be clarified at the early stages of the
testing of the script.

B – Desktop

B1 - Infrastructure

In this section, “infrastructure” includes landline phones, printers, copiers, video con ferencing

devices and similar items. The firmware of those devices has not been listed and no inventory
is currently available to rely on, in order to select the open source components. For this
reason, this layer is not covered by the methodology.

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 43 of 87

B2 – Operating System & B3 – Local Applications

The information on the operating systems and local applications installed on the workstations
is managed by Landesk, a tool operated by DIGIT A2.

In the case of typical workstation users not having administrative rights on his computer,

there is no risk that a software component not managed by Landesk be installed on the
machines.

However, roughly 10% of users do have administrative rights, and so, can install any software
on their machine. If they do so, Landesk will discover it and it will appear in a daily report.

Should the admin user decide to disable Landesk on his computer, the system would be
automatically banned from Active Directory.

For all those reasons, Landesk is considered a reliable source of information on all the
applications installed on the workstations managed by the DIGIT.

B4 – Virtual Applications

Besides the local applications installed on the workstations, DIGIT A2 also provides virtual

applications through the Microsoft App-V technology.

The App-V service already can export the catalogue of virtual applications and their usage.

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 44 of 87

C – Mobile devices

C1 - MDM

Mobile devices are managed by the MDM system. However, the MDM tool cannot collect all
the applications installed the mobile devices. Hence, there is no current inventory, nor any
current tool in place that would build such an inventory of open source mobile device

applications. Moreover, as far as the MDM security layer is concerned (for instance, securing
e-mail application), and from the customer’s understanding, no substantial open source
software is installed.

Eventually, even if the methodology described in the present chapter could very well cover
the mobile devices, such devices will remain out of scope in the pilot scenario due to the lack

of information available at the issue of this release of the document.

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 45 of 87

Summary of coverage and readiness of the information sources

Based on the various sources of information that will be used to build the inventory, the
general figure can now be instantiated as follows.

Figure 20: Coverage of inventory with information sources (European Commission)

Another way to qualify the information sources is to rate to what extent the information can

be accessed. The following figure gives an overview of this situation.

Figure 21: Readiness of the information sources (European Commission)

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 46 of 87

ANNEX 2 : METRICS SUSTAINABILITY CRITERIA

A1 Introduction

1.1. Objective of this Document and Intended Audience

This document represents the deliverable 6 included within TASK-04: Final metrics definition. The objec-

tives of this document are:

 To identify and categorise the aspects that can affect the sustainability of FOSS projects;

 To provide a list of the most relevant metrics that can be used to evaluate the sustainability of

FOSS projects;

 To provide a tool to measure these metrics.

This document is addressed to the areas interested in the use of these metrics to evaluate the sustaina-

bility of FOSS projects.

1.2. Document Structure

This document consists of the following sections:

 Section 1: Introduction, which describes the objectives of this deliverable and the intended audi-

ence, the structure of the document and the key success factors.

 Section 2: Metrics to analyse the sustainability of FOSS projects, which identifies and describes

the metrics and respective categories that can be used to evaluate the sustainability of these pro-

jects.

 Section 3: Metric Measurement Approach, which describes the process for measuring the met-
rics.

1.3. Key Success Factors

All the steps described in Section 2 – Metrics to analyse the sustainability of FOSS projects, will ensure

the fulfilment of the key success factors related to this deliverable:

 FOSSA outcomes provide new tools for CISO to measure the risk level of open source compo-

nents.

1.4. Deliverables

1 Deliverable 4: Analysis of Software Development Methodologies Used in
FOSS communities

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 47 of 87

B1 Metrics to Analyse the Sustainability of FOSS Projects

If you are going to rely on a FOSS community contribution-based project for your own project, you want

to ensure that the community will continue to support it throughout the lifecycle of your project. For any

FOSS project, the sustainability of its communities is fundamental for i ts long term success.

There are many different aspects of a FOSS project that can affect the community sustainability: Good

project management, an effective structure of governance, fair licensing, leadership, community activity

and performance, and support from external entities are key for healthy and sustainable FOSS communi-

ties.

In this section, we will identify the aspects that can affect the sustainability of FOSS projects, and we will

design a set of measurable metrics that can be used to evaluate the sustainability of these projects

1.5. Identification and Analysis of the Complete Set of Aspects that

Can Affect the Sustainability of the FOSS Projects

In order to identify and analyse the complete set of aspects that can affect the sustainability of th e

FOSS projects, we researched and gathered information from several sources:

1 Everis FOSS expert team

2 The websites of the communities that were analysed in Deliverable 4

3 Relevant websites and research papers (see Section 4. Bibliographical References)

The information gathered was analysed and, as a result, we defined six categories of metrics, as

follows:

1. Community Activity

The overall activity of the community and how it evolves over time is a useful metric category

for all open source communities.

The Community Activity provides a first view into how much the community is doing, and it

can be used to track the different activities that the community conducts, such as:

1. How many people took part in a relevant amount of a particular activity, like code devel-

opment, code review, bug fixing?

2. Number of commits, releases, tickets

3. Communications activity (Mailing list, posts, forums, chat history)

4. Number of adoptions/implementations by external organisations / communities

5. Software evolution in terms of code, architecture and bug resolution, which is an indicator

of the maturity of the project

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 48 of 87

2. Performance

Performance allows you to analyse how processes and people are completing their tasks.

For example, you can measure:

1. How long processes take to finish, like implementing a new feature, fixing a bug, or con-

ducting code review.

2. The time that it takes to resolve or close tickets

3. The time spent conducting code review

3. Quality and Security

Quality and security are two very important factors to evaluate for the sustainability of a project,

for two main reasons:

1. A methodology that checks the quality of the code and ensures that different types of

testing are conducted, which will also help the project to be of greater interest to the com-

munities.

2. A project that has included security from the design stage, and implements it throughout

its lifecycle, has a much better chance to live longer, because the identified security risks

will be mitigated.

4. Demographics and Diversity

Demographics give us an overview of the developers and users around a project, and the

companies that engage in it. This includes hosting and support providers, consultancy and

customisation services, and companies that integrate the software with other products as part

of solutions.

The number of companies involved in a project is an important indicator, since such companies

will clearly have a strong interest in the sustainability of the software.

A sustainable project accumulates partners and providers of increasing specialisation. Like-

wise, if there are signs of service companies moving away from supporting the project this

may be an indicator of underlying problems. As a result, projects that have been in production

for a long time have a better chance to stay in the long run.

Another factor to take into consideration is the existing knowledge in the external market, re-

garding the language and platforms used in the project. This factor is extremely important

because a project based on a very specific piece of knowledge that is not easily found or not

of

interest to the outside community of developers may find it difficult to stay in the long term,

therefore directly affecting the sustainability of the project as a whole.

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 49 of 87

Diversity is an important factor in the resilience of communities. In general, the more diverse

communities are—in terms of people or organisations that participate—the more resilient they

are. For example, when a company decides to leave a FOSS community, the potential prob-

lems that the departure may cause are much smaller if its employees were contributing 5% of

the work rather than 85%.

For the organisations that support the project, it is quite useful to look at their diversity in sev-

eral ways:

1. Do they operate only in one country, or are they geographically spread out? And if so, in

different continents?

2. Are they a mix of small and large companies?

3. Do they target a single sector or multiple industry sectors?

5. Governance

Governance is essential for the sustainability and evolution of a FOSS project and its associ-

ated communities.

It gives information on:

1. How the project is organised

2. Who is who in the project

3. If a roadmap exists

4. How well documented the project is

5. The licensing structure

6. FOSS Support

Support, either financial, tangible assets or workforce, is needed to ensure the sustainability

of the FOSS project and its associated communities. This support can take various forms:

1 Financial

2 Infrastructure assets

3 Human Resources

1.6. Design of a Set Of Metrics

The objective of this task is to define a set of metrics with detailed aspects that will make it easy to measure

the sustainability of the FOSS projects.

After the information gathering and the analysis conducted in task 2.1 Identification and analysis of the

complete set of aspects that can affect the sustainability of FOSS projects, a total of 34 metrics were

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 50 of 87

defined and grouped in the six categories identified. Table 1 shows the categories with their corresponding

metrics.

Table 1: Categories w ith their corresponding metrics

Category No. Metric Name

Communit y

Activity

1 Code Activity (contributions and contributors)

2 Release History

3 Number of Commits

4 Number of Tickets

5 Communications (Mailing list, posts, forums, chat history)

6 Number of Adoptions/Implementations by External Organisations / Communities

7 SW Evolution (code, architecture, bug/feature)

8 Programming Language Used

9 Project Domain (OS, Application SW, IDE, Application servers, Libraries, desktop

Environments and frameworks). I.e. Apache, Linux, Eclipse, Mozilla, Ant, GNoME,

KDE)

10 Source Code (repositories like CVS/SVN for code base, GitHub, source forge).

Performance 11 Time to Resolve Tickets

12 Time Spent in Code Reviews

13 Pending Work

Quality and

Security
14 Security Requirements

15 Threat Modelling

16 Security Code reviews

17 Security Testing

18 Vulnerability Management

19 Software Development Methodologies

20 SLA

Category No. Metric Name

Demograp hics

and

Diversity

21 Longevity

22 Real Knowledge Existent in the market of the language and Platforms Used.

23 People Participating

24 Organisation Participating

25 Geographically distributed user community

Governance 26 Project Management

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 51 of 87

27 Project Roadmap

28 Project Structure

29 Documentation

30 Licensing

31 Training

FOSS Support 32 Funding - Monetary

33 Work force

34 Infrastructure assets

1.7. Define Metrics Criteria

In order to design the forms that will be used to compile all the information for each metric, we defined the

following criteria:

1. Metric Name: Descriptive name of the metric.

2. Description: what the metric should accomplish.

3. Unit of Measurement: it refers to the way the metric will be measured: a number, a maturity level,

etc.

4. Method: it defines how the metric will be measured.

5. Measurement: it defines the actual measurement of the metric, i.e. the maturity level.

6. Result: the formula applied to measure the metric.

All the information of each metric is documented in the following forms, grouped in one of the 6 categories

defined in Task 2.1 Identification and analysis the complete set of aspects that can affect the sustainability

of FOSS projects

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 52 of 87

2.3 .1. Community Activity

M1 Metric Name Code Activity (contributions and contributors)

Description For a project to be sustainable it must have contributors, and its codebase needs to be

evolving.

One can track this by looking at the project’s revision control system and looking at the

pattern of contributions.

This metric measures the amount of committers that contribute to a majority of the com-

mits in the project.

Unit of Measure-

ment

Ratio of contributors

Method This analysis will be carried out by checking the community website and wiki. The infor-

mation to look for will be the pattern of contributions, to identify the number of contributors

who submitted 80% of the total contributions in a specific period of time (mostActiveCon-

tributors80).

Formula to calculate the ratio of contributors:

Contributors ratio = (mostActiveContributors80 / (mostActiveContribu-

tors80 + 1% x totalContributors)) x (totalContributors/ totalContributors

+ 10)

Measurement 1. Very split: Ratio value within the upper 20% of the maximum ratio

2. Split: Ratio value ranked between 79% and 60% of the maximum ratio

3. Average: Ratio value ranked between 59% and 40% of the maximum ratio

4. Dependant: Ratio value ranked between 39% and 21% of the maximum ratio

5. Very dependant: Ratio value within the lowest 20% of the maximum ratio

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 53 of 87

M2 Metric Name Release History

Description This metric measures the approach followed for releases that provide information on the

update frequency

1. Regular releases (disruption in the cycle might indicate sustainability or governance

issues, in which case the best way to find out is to go into the project communications

area and see if there is an issue)

2. Releases on a “need to have" basis. Some projects make releases as and when they

feel ready, so they do not follow an established frequency.

3. When do releases occur? On the weekends (suggesting a hobby) or during the week

(suggesting a business)?

Unit of Measure-

ment

Release frequency

Method Look at the release pattern for a certain period of time

Measurement 1 Optimised: formal approach, regular releases are planned and delivered periodi-

cally, with the exception of security fixes.

2 Managed: informal approach, release is published when development objectives

are achieved.

3 Initial: informal approach, release is published without clear definition criteria.

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 54 of 87

M3 Metric Name Number Of Commits

Description The number of commits gives a general idea about the volume of the development ef-

fort.

Unit of Measure-

ment

Number of commits

Method This analysis will be carried out by checking the community website and wiki. The infor-

mation to look for will be the number of code commits done by contributors during - last

year. The number of most active contributors will be those that submitted 50% of the total

contributions

Formula to calculate the ratio:

Commits Ratio = (nCommitsLastYear /

nNumberCommitsLastYearTopPopularGitHubRepository) *100

Measurement 1 Very active: Ratio value within the upper 51% of the maximum ratio

2 Active: Ratio value ranked between 26% and 50% of the maximum ratio

3 Average: Ratio value ranked between 6% and 25% of the maximum ratio

4 Inactive: Ratio value ranked between 1% and 5% of the maximum ratio

5 Very Inactive: Ratio value within the lowest 1% of the maximum ratio

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 55 of 87

M4 Metric Name Number Of Tickets

Description The number of tickets opened provides information about how many bugs are reported

or the new functionalities that are proposed.

Unit of Measure-

ment

Ratio of tickets created

Method This analysis will be carried out by checking the community's main tasks or ticket reposi-

tory. The information to look for will be when the tickets are created

Measurement 1 Very active: there are, at least, 10 tickets created in the last week.

2 Active: there are, at least, 10 tickets created in the last two weeks.

3 .Average: there are, at least, 10 tickets created in the last month.

4 Inactive: there are, at least, 10 tickets created in the last three months.

5 Very Inactive: rest of the values

M5 Metric Name Communications (Mailing list, posts, forums, chat history)

Description The number of messages in mailing lists or posts in forums gives an idea of how many

discussions are being held in public. However, this metric needs to differentiate the types

of activities that are conducted in the communications, which can range from some seri-

ous discussions to unnecessary flame wars (in this case, the communication channel

should not be accounted for).

Unit of Measure-

ment

Number of active communication channels

Method This analysis will be carried out by checking official communication channels provided by

the community. The information to look for will be the number of active communication

channels used by the community.

Measurement 1 Optimised: More than three communication channels are used (different mailing

lists, IRC, wiki, user forums and web post are used for the project).

2 Managed: At least three communication channels are used in the project.

3 Initial: less than three channels are used for exchanging information.

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 56 of 87

M6 Metric Name Number of Adoptions/Implementations by External

Organisations / Communities

Description Software downloads provide information about the global interest in the project

Each distribution platform provides its own metrics to describe popularity. For example,

on GitHub, watchers, stars, and forks are the strongest indicators of a project’s popularity

and use. On WordPress.org, you can see the number of downloads a plugin receives, as

well as its average user rating. If distributed via package manager (e.g., Rubygems, NPM),

you can see the number of installs. These indicators show how much the project is used.

Unit of Measure-

ment

Interest level

Method This analysis will be carried out by checking distribution platforms.

The information to look for will be the identification and measurement of the interest, in

order to rank it within the levels defined. This level of interest will be measured by means

of doing the following assessment:

Taking the 5 most downloaded/popular projects, an average will be assessed (Av). The

level of popularity (using the Alexa ranking) of the project or the number of downloads

(P) will be divided by that average. The result is the adoptions ratio (Ra).

Ra = P / Av

Measurement 1 Very Interesting: The ratio value is larger than 1

2 Interesting: The ratio value is between 1 and 0,51

3 Normal The ratio value is between 0,50 and 0,26

4 Disappointing: The ratio value is between 0,25 and 0,11

5 Very disappointing: The ratio value is smaller than 0,10

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 57 of 87

M7 Metric Name SW Evolution (code, architecture, bug/feature)

Description This metric evaluates the evolution level of the software development cycle:

1 Code development follows a methodology

2 Improvements were made to the architecture supporting the software development

3 Improvements were made to the bug fixing process

Unit of Measure-

ment

Maturity level

Method This analysis will be carried out by checking the community website and wiki.

The information to look for will be the project's development lifecycle and the evaluation

of these three parameters:

1 Code development follows a methodology

2 Architecture Improvements

3 Improvements bug fixing process

Measurement 1 Optimised: The community applies all three parameters

2 Addressed: They accomplish two of the three parameters analysed

3 Partially Addressed: They accomplish one of the parameters

4 Initial: They don't address any of the parameters analysed

M8 Metric Name Programming Language Used

Description This metric evaluates the use of a stable and widely used programming language

Unit of Measure-

ment

Use of the programming language

Method This analysis will be carried out by checking the community website and wiki.

The goal is to measure the maturity of the programming language used using TIOBE In-

dex as indicator.

http://www.tiobe.com/tiobe_index

Measurement 1 Very popular: First 5 entries from TIOBE

2 Popular: Languages ranked from 6 to 15 from TIOBE

3 Average: Languages ranked from 16 to 20 from TIOBE

4 Unusual: Rest of the languages from TIOBE

http://www.tiobe.com/tiobe_index

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 58 of 87

M9 Metric Name Project Domain (OS, Application SW, IDE, Application serv-

ers, Libraries, desktop Environments and frameworks.

I.e. Apache, Linux, Eclipse, Mozilla, Ant, GNoME, KDE…)

Description The sustainability of the projects increases if they belong to the most common domains:

Operating Systems (OS), Application Software, Integrated Development Environments

(IDE), Application Servers, Libraries, Desktop Environments and Frameworks. Examples

of projects in these domains include Linux, Eclipse, Apache, Ant, Mozilla, GNOME, KDE,

and ArgoUML

This metric will evaluate if the project belongs to one of these domains.

Unit of Measure-

ment

Domain type

Method This analysis will be carried out by checking the community website and wiki. The infor-

mation to look for will be the project's domain:

1. Common: Operating Systems (OS), Application Software, Integrated Development

Environments (IDE), Application Servers, Libraries, Desktop Environments and

Frameworks. Example projects under these domains include Linux, Eclipse, Apache,

Ant, Mozilla, GNOME, KDE, and ArgoUML.

2. Not common

Measurement 1 Common Domain

2 Not common domain

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 59 of 87

M10 Metric Name Source Code (repositories like CVS/SVN for code base,

GitHub, source forge).

Description This metrics measures if the developer uses existing repositories to produce quality code.

1. Repositories maintaining the code base (e.g., CVS/SVN, change log) are data

sources that contain information on the underlying software and its development pro-

cess, ensuring that everything is commented. Comments are clear and free of mis-

spellings, and the project includes extensive tests.

2. External sources, like SourceForge.net, repositories hosting thousands of FOSS pro-

jects

Unit of Measure-

ment
Position in Alexa ranking

Method This analysis will be carried out by checking the Alexa ranking for open source project

hosting:

http://www.alexa.com/topsites/category/Computers/Open_Source/Project_Hosting

Measurement 1 Popular Repository: 1st, 2nd, 3rd positions

2 Common Repository: 4th, 5th, 6th positions.

3 Independent Repository: From 7th up to 15th positions.

4 Marginal Repository: Not ranked in the first 15 positions in Alexa ranking.

http://www.alexa.com/topsites/category/Computers/Open_Source/Project_Hosting

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 60 of 87

2.3 .2. Performance

M11 Metric Name Time to Resolve Tickets

Description This metric measure the Time it takes to resolve or close tickets. This metric shows how

the project is reacting to new information that requires another action, such as fixing a

reported bug or implementing a requested new feature.

Unit of Measure-

ment

Average period to resolve a ticket

Method This analysis will be done by looking at the software development statistics during a cer-

tain period of time (for example, 6 months)

The formula to calculate the average time is as follows:

Average time = sum(ticket solving time)/number of tickets

Measurement 1 Optimised: Average_time < 5 days

2 Defined: 10 days > Average_time >= 5 days

3 Managed: 15days > Average_time >= 10 days

4 Basic: 15days <= Average_time

5 No data about this

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 61 of 87

M12 Metric Name Time Spent in Code Reviews

Description These metric measures the Time spent in code reviews —from the moment a change to

the code is proposed, to the moment it is accepted—, and it shows how long it takes to

upgrade a proposed change to the quality standards expected by the community. Other

metrics deal with how well the project is coping with pending work, such as the ratio of

new to closed tickets, or the backlog of still incomplete code reviews. Those parameters

tell us, for example, whether or not the resources put into solving issues are enough.

Unit of Measure-

ment

Average time to do code reviews. (Considering the minimum number of code reviews

before being accepted or rejected)

Method This analysis will be done by looking at the annual community reports. The formula to

calculate the average time is as follows:

Average time = sum(code review acceptance time)/number of code reviews

Measurement 1 Optimised: Average_time <= 3 days

2 Defined: 7days>= Average_time > 3 days

3 Managed: 15days>= Average_time > 8 days

4 Basic: Average_time > 15 days

5 No data about this

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 62 of 87

M13 Metric Name Pending Work

Description This metric measures the ratio of new to closed tickets, or the backlog of incomplete

code reviews

This parameter is also an indicator of whether or not the resources put into solving is-

sues are enough.

Unit of Measure-

ment

Ratio of new and closed tickets

Method The ratio between closed tickets (issues) and new ones will be done, if possible, taking

a month as timeframe.

The formula to calculate this ratio is as follows:

SolvingRatio = NewTickets/ClosedTickets * 100

Measurement 1 Optimised: SolvingRate <=33%

2 Controlled: 33% < SolvingRate <= 66%

3 Managed: 66% < SolvingRate <= 100%

4 Overloaded: 100% > SolvingRate

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 63 of 87

2.3 .3. Quality and Security

M14

Metric Name Security Requirements

Description This metric measures the existence and maturity level of the definition of security re-

quirements in the early stages of the SDLC

Unit of Measure-

ment

Maturity level

Method This analysis will be carried out by checking the community website and wiki. The infor-

mation to look for will be the definition of security requirements.

If possible, the information will be verified by contacting the community.

Measurement 1 Optimised: Specific requirements (defined at the initial phases)

2 Defined: Within business requirements

3 Managed: Security requirements defined as needed

4 Initial: No Security Requirements

M15 Metric Name Threat Modelling

Description This metric measures the existence and maturity level of threat modelling

Unit of Measure-

ment

Maturity level

Method This analysis will be carried out by checking the community website and wiki.

The information to look for will be the definition of the approach to threat modelling. If

possible, the information will be verified by contacting the community.

Measurement 1 Optimised: They have threat modelling and countermeasures are implemented or

in the process of being implemented (managed)

2 Managed: No formal threat modelling, however some countermeasures are imple-

mented (from previous experiences)

3 Initial: No threat modelling

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 64 of 87

M16 Metric Name Security Code Reviews

Description This metric measures the existence and maturity level of security procedures such as

code reviews

Unit of Measure-

ment

Maturity level

Method This analysis will be carried out by checking the community website and wiki.

The information to look for will be the definition of the security code review process (se-

curity code reviews is being responsibly conducted).

If possible, the information will be verified by contacting the community.

Measurement 1 Formal: Security code reviews conducted by a specific team

2 Informal: Security code reviews conducted by community members

3 No security code reviews conducted

M17 Metric Name Security Testing

Description This metric measures the existence and maturity level of security procedures such as

security testing (white box /black box)

Unit of Measure-

ment

Maturity level

Method This analysis will be carried out by checking the community website and wiki.

The information to look for will be if the definition of the security testing process (security

testing is being conducted, specifying in which SDLC phase).

If possible, the information will be verified by contacting the community.

Measurement 1 Optimised: Security testing conducted during development

2 Defined: Security testing conducted during testing

3 Managed: Security testing conducted before release

4 Basic: No security testing or conducted after release (user finds a vulnerability)

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 65 of 87

M18 Metric Name Vulnerability Management

Description This metric measures the existence and maturity level of vulnerability management.

Unit of Measure-

ment

Maturity level

Method This analysis will be carried out by checking the community website and wiki.

The information to look for will be the definition of the vulnerability management process.

If possible, the information will be verified by contacting the community.

Measurement 1 Optimised: Vulnerability management conducted by a dedicated team

2 Defined: Vulnerability management conducted as part of the security team´s re-

sponsibilities

3 Managed: Vulnerability management conducted by a closed group (community

leaders, vulnerability stakeholders, trusted members)

M19 Metric Name Software Development Methodology

Description This metric measures the existence and maturity level of the software development

methodologies used

Unit of Measure-

ment

Maturity level

Method This analysis will be carried out by checking the community website and wiki.

The information to look for will be the software development methodology used in the

project.

If possible, the information will be verified by contacting the communi ty.

Measurement 1 Optimised: Use of a standard methodology (i.e. Scrum, Agile, Kanban, Waterfall)

2 Managed: Use of their own documented methodology

3 Basic: Random, individual contributions

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 66 of 87

M20 Metric Name SLA

Description An SLA that defines the parameters for ticket resolution, bug fixing, etc…

This metric measures the existence and maturity level of an SLA

Unit of Measure-

ment

Maturity level

Method This analysis will be carried out by checking the community website and wiki. The infor-

mation to look for will be the definition of an SLA in the project.

If possible, the information will be verified by contacting the community.

Measurement 1 Formal: An SLA exists and is managed

2 Informal: An SLA does not exist, however, there is an informal procedure to re-

solve the issues

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 67 of 87

2.3 .4. Demographics and Diversity

M21

Metric Name Longevity

Description This metric measure how long the project has been in a "live" or production status. Some

open source projects are long-lived, leading more conservative organisations to adopt the

software, and maintain its use for longer, and resulting in a longer-term investment in its

sustainability.

If a project has survived long enough to undergo several technology replacement cycles,

this is a good indication that it is going to be around for years to come. The warning signs

appear when there seems to be subsequent migrations from one project community to

another. Eventually, even a large, mature project will start to suffer if this happens.

Unit of Measure-

ment

Start year of the project

Method This analysis will be carried out by checking the community website and wiki. The infor-

mation to look for will be the starting date of the project.

If possible, the information will be verified by contacting the community.

Measurement 1 Reference Project in FOSS environment: Project started before 2000

2 Veteran Project: Project started between 2000 and 2005

3 Experimented Project: Project started between 2005 and 2010

4 Adult Project: Project started between 2010 and 2015

5 Beginner Project: Project started after 2015

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 68 of 87

M22 Metric Name Real Knowledge Existent in the Market about the Language

and Platforms Used.

Description The PYPL PopularitY of Programming Language Index is created by analysing how often

language tutorials are searched on Google: the more a language tutorial is searched, the

more popular the language is assumed to be. It is a leading indicator.

The raw data comes from Google Trends.

Unit of Measure-

ment

PYPL index

Method This analysis will be carried out by checking the website: http://pypl.github.io

Measurement 1 Popular programming language: PYPL share >10%

2 Common programming language: 10% >= PYPL share >5%

3 Specialised programming language: 5%>= PYPL share

http://pypl.github.io/

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 69 of 87

M23 Metric Name People Participating

Description This metric evaluates the different groups and number of active members that are partic-

ipating as contributors or supporters of this community. Having a diversity of contributors

indicates that there’s a community of users who rely on and care about improving the

software. Contributors need not be only technical. Look for those contributing to docu-

mentation processes, posting on support forums, or filing issues and feature requests.

They can be grouped as:

1 Developers

2 Documenters

3 Supporters

Unit of Measure-

ment

Number of active groups

Method This analysis will be carried out by checking the community website and wiki. The infor-

mation to look for will be the number of working groups or teams within the community.

If possible, the information will be verified by contacting the community.

Measurement 1 High: Three or more groups

2 Medium: Two groups

3 Low: One group

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 70 of 87

M24 Metric Name Organisations Participating

Description This metric evaluates the number of different organisations that are participating as con-

tributors or supporters of this community. There are many open source projects that can

meet the above mentioned criteria, but if none of the peers are using the project (or haven’t

even heard of it), that could be a major red flag. Many companies proudly showcase the

open source projects they’re built on, and Google searches can often reveal those that

don’t.

Unit of Measure-

ment
Levels, indicating the number and relevance of supporting organisations

Method This analysis will be carried out by checking community website and wiki. The infor-

mation to look for will be the organisations that support the project.

If possible, the information will be verified by contacting the community.

Measurement 1 Level 1: Several big technological organisations participate in the project

2 Level 2: Only one big technological organisation participates in the project

3 Level 3: Several organisations participate in the project

4 Level 4: One organisation participates in the project

5 Level 5: No participating organisations

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 71 of 87

M25 Metric Name Geographically Distributed User Community

Description This metric evaluates how geographically spread out the user community is.

Unit of Measure-

ment

Number of continents

Method This analysis will be carried out by checking the community website and wiki.

Identify the home country/continent of the current top contributors (100).

Measurement 1 Geographically widely spread: more than 4 continents

2 Geographically spread: Between 2 and 4 continents

3 Geographically concentrated: Less than 2 continents

2.3 .5. Governance

M26 Metric Name Project Management

Description This metric measures the existence and maturity level of the project management cycle

Unit of Measure-

ment

Maturity level

Method This analysis will be carried out by checking the community website and wiki.

The information to look for will be the project's management cycle conducted by the

community.

If possible, the information will be verified by contacting the community.

Measurement 1 Optimised: Project Management is defined and implemented

2 Defined: Project Management is defined and documented, but does not com-

pletely follow the agreed methodology

3 Managed: Project management is conducted in an informal way

4 Initial: Project management is conducted as needed

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 72 of 87

M27 Metric Name Project Roadmap

Description This metric evaluates the existence and maturity level of a project roadmap

Unit of Measure-

ment

Maturity level

Method This analysis will be carried out by checking the community website and wiki. The infor-

mation to look for will be the community’s project roadmap.

If possible, the information will be verified by contacting the community.

Measurement 1 Optimised: Project roadmap is defined and implemented

2 Defined: Project roadmap is defined and documented, but does not completely fol-

low the agreed methodology

3 No project roadmap

M28 Metric Name Project Structure

Description This metric evaluates if there is a formal structure for the project.

1 How is the project organised?

2 Who is behind the project, in terms of number of people?

3 Are they fully committed to the project or is it a partial assignment, done on a volun-

tary basis?

Unit of Measure-

ment

Documentation coverage defined in 3 levels

Method This analysis will be carried out by checking the community website and wiki. The infor-

mation to look for will be the project structure (organogram).

If possible, the information will be verified by contacting the community.

Measurement 1 Optimised: A formal structure with roles and responsibilities is defined, following

an enterprise approach

2 Managed: An informal structure, with roles and responsibilities defined, although it

may not be complete (i.e. no security roles)

3 Initial: Only leader and contributor roles are defined.

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 73 of 87

M29 Metric Name Documentation

Description This metric will indicate the level of the documentation existent in the project.

1 Is it a readme file or a dedicated documentation site?

2 Does it have technical documentation that covers how to install, and specifies re-

quirements, dependencies?

3 Does it have a user manual?

4 Does it have general documentation?

Unit of Measure-

ment

Documentation coverage defined in 3 levels

Method This analysis will be carried out by checking the community website and wiki. The infor-

mation to look for will be the documentation of the project.

If possible, the information will be verified by contacting the community.

Measurement 1 Full documentation: a) developer guides (code style, code review, security review,

development environment), b) user manual, c) technical manual (for system admin-

istrator), d) support wikis.

2 Partial documentation: Only main documentation is developed, user-oriented and

for developers

3 Basic documentation: Only two types of documentation are developed, mainly

user-oriented

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 74 of 87

M30 Metric Name Licensing

Description This metric will indicate how serious the project is in terms of providing intellectual prop-

erty.

1 Is the project properly licensed?

2 What type of license is provided?

3 Does it contain a license file or just a reference to a license in the readme?

4 Do files contain the proper headings, where required?

Unit of Measure-

ment

Intellectual property level

Method This analysis will be carried out by checking the community website and wiki. The infor-

mation to look for will be the license file of the project.

If possible, the information will be verified by contacting the community.

Measurement 1 Optimised: Project has a license history, up-to-date license that contains proper

headings

2 Defined: Project incorporates a license file with proper headings.

3 Managed: Project incorporates a license file without proper headings.

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 75 of 87

M31 Metric Name Training

Description This metric measures if the project has provisions for regular training to ensure the qual-

ity of project deliverables

Unit of Measure-

ment

Training programmes coverage defined in 3 levels

Method Identification of the regular training provided by the project

Measurement 1 Optimised: Project has a complete set of documentation for newcomers (How to

contribute, how community works, tools), and a mentor is assigned to help them to

get started.

2 Managed: Project has a complete set of documentation for newcomers (How to

contribute, how community works, tools)

3 Basic: Project has some informal information for newcomers (How to contribute,

how community works, tools)

2.3 .6. FOSS Support

M32

Metric Name Funding - Monetary

Description This metric measures if the project is being supported by some kind of monetary funding

from an external source

Unit of Measure-

ment

Funding level

Method This analysis will be carried out by checking the community website and wiki.

The information to look for will be the "Thanks" or "acknowledgment" part in the pro-

ject/community website.

If possible, the information will be verified by contacting the community.

Measurement 1 Optimised: Different external organisations fund the project directly, or it is funded

from a private organisation that does business with the FOSS

2 Managed: Different external organisations fund different projects in the same

community.

3 Basic: No funding by third-party organisations, just individual donations.

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 76 of 87

M33 Metric Name Workforce

Description This metric measures if the project is being supported by external volunteers who pro-

vide support in development, documentation or issue management tasks

Unit of Measure-

ment

Workforce level

Method This analysis will be carried out by checking the community website and wiki.

The information to look for will be the "Thanks" or "acknowledgment" part in the pro-

ject/community website.

If possible, the information will be verified by contacting the community.

Measurement 1 Optimised: there are paid human resources in all areas of the project, working ex-

clusively in that area. Volunteers can also be part of the project

2 Dedicated: there are paid human resources working in one or more areas of the

project. Volunteers can also be part of the project

3 Volunteering: There are only volunteers in the project.

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 77 of 87

M34 Metric Name Infrastructure Assets

Description This metric measures if the project is being supported by the provision of equipment or

software licenses from an external source

This provision can come from a monetary donation or an actual asset donation

Unit of Measure-

ment

Type of infrastructure

Method This analysis will be carried out by checking the community website and wiki.

The information to look for will be the "Thanks" or "acknowledgment" part in the pro-

ject/community website.

If possible, the information will be verified by contacting the community.

Measurement 1 Dedicated: Community is the infrastructure owner

2 Mixed: Dedicated and shared infrastructure.

3 Shared: Infrastructure assets are shared with other communities

C1 Metrics measurement approach

Following the criteria defined and agreed upon in Section 2.3 Define Metrics Criteria, we conducted the

following activities to measure the metrics designed in Section 2.2 Design of a Set of Metrics:

3.1 . Tool to measure the metrics

1. Development of an Excel sheet, with all the metrics that were defined in Section 2.2 Design of a Set

of Metrics and all the metrics criteria defined in Section 2.3 Define Metrics Criteria

2. Definition of a unit of measurement for each metric

3. Development of method to measure each metric. This method could be a formula to calculate the

ratio of two values, or data obtained from the project website.

4. Each measurement is normalised, so all the metrics can be analysed on the same scale, in a quan-

titative way

5. To show the results in a graphic way, easy to understand, a set of example graphs are produced, to

represent the results in a graphical way.

To view the measurement tool, click on the icon below:

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 78 of 87

Metrics measurement tool

3.2 . Frequency of the measurement

Bitergia, a company focused on software development analytics, indicates in the article ‘On the Importance

of Quarterly Reports: OPNFV and OpenStack as use cases’, that measurement of all the metrics should

be conducted at least on a quarterly basis.

3.3 . Responsible for the measurement

A team should be appointed to conduct the metric measurement of the selected FOSS projects.

For successful measurements, the team should have a suitable level of relevant skills and experience.

These skills include:

 Analytical thinking, to notice discrepancies and inconsistencies in available information.

 Communication skills, oral and written, to ensure that important information is shared with others

appropriately and to communicate results

 Specific knowledge for particular categories, e.g. project management knowledge for the govern-

ance category, security knowledge for the Quality and Security category, etc.

 Experience in conducting metrics evaluations

 Teamwork

3.4 . Results

Once the measurement is conducted, 8 types of graphs can be produced, as follows:

1. One for each of the categories defined in Section 2.1 Identification and Analysis of the Com-

plete Set of Aspects that Can Affect the Sustainability of the FOSS Projects

2. A graph comparing each community against all 6 categories.

A sample of the graphs is shown in Figures 1 through 7

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 79 of 87

Figure 1: Activity

Figure 2: Performance

Activity

Source code

(repositories l ike…

Project domain (OS,
Application…

Code Activity

100%

80%

0%

Release history

Number of

commits

Project 1

Project 2
Programming

language used
Number of tickets

SW evolution

(code,…

Communications

(Mailing list,…

Adoptions/
implementations by…

Performance

Pending work

100%

0%

Project 1

Project 2 Time to resolve

tickets
Time spent in code

reviews

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 80 of 87

Figure 3. Quality and Security

Figure 4: Governance

Quality and Security

SLA

Security

100%

80%

0%

Threat modelling

Project 1

Quality assurance -

used

Security Code

reviews

Project 2

Vulnerability

management
Security testing

Governance
Project Management

100%

80%

Training

0%

Project Roadmap

Project 1

Project 2

Licensing Project structure

Documentation

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 81 of 87

Figure 5. Demographics and Diversity

Figure 6. FOSS Support

Figure 7. Comparison of Projects and Categories

Demographics and Diversity

Geographically

distributed user

community

100%

Real knowledge

existent in the
market of the

language and…
Project 1

Project 2

Organisations

participating
People participating

FOSS Support
Funding - Monetary

100%

0%
Project 1

Project 2

Infrastructure assets Work force

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 82 of 87

Figure 8. Average of All Categories that Indicates Overall Sustainability of Analysed Projects

Comparison of Projects and Categories

Quality and Security
100%

80%

Perfomance

40%

20%

0%

Project 1

Project 2

Proyect 3

Proyect 4

Community Activity FOSS Support

Governance

Average of All Categories that Indicates

Overall Sustainability of Analysed Projects

80%
71% 68%

53%
60%

50%

40% TOTAL

0%

Score Project 4 Score Project 1 Score Project 3 Score Project 2

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 83 of 87

ANNEX 3: DETAILED DESCRIPTION OF TARGET DATA MODEL

Entity
Name Definition Type
AppSoftware The entity describes application / app software. Dependent
Criterion The entity describes a quality criterium used to assess if related software belong to the

Critical Software Shortlist.
Independent

CustomSoftware The entity describes software defined ad-hoc. Dependent
DataCenterResources This layer groups all the possible open source software embedded inside physical devices

such as routers, load balancers, SANs, switches, firewalls…
Dependent

Dependencies The entity lists all the software on which a software depends on. Dependent
DevelopmentPlatform The entity describes a software development platform or tool. Dependent
License The entity describes a software license and its terms. Independent
LicenseCompliance The materialised relationship connects a software to the licenses it complies with. Dependent
MobileDevice The entity describes a portable device (smartphone, tablet, etc.). Dependent
MobileSoftware The entity describes software that has been developed for mobile devices. Dependent
OperatingSystem The entity describes an operating system. Dependent
Organization Independent
RuntimeSoftwarePlatform The entity describes a web server, DBMS, application server or any kind of

runtime/middleware;
Dependent

Server The entity describes a computer used for hosting purposes. Dependent
Software The entity describes software. Independent
SoftwareCriteria The materialised relationship connects softwares with their related quality criteria. Dependent
SoftwareInstance The entity represents a deployed software, hence it relates with one or more hosts. Dependent
SoftwareVersion The entity describes the version of a Software. Dependent
SoftwareVulnerabilities The materialised relationship connects a software version with its related detected

vulnerabilities.
Dependent

Standard The entity describes a standard, whose characteristics are: openness, transparency and

being based on consensus.
Independent

StandardCompliance The materialised relationship connects a software to the standards it complies with. Dependent
System The entity represents a real machine or device on which software has been installed. Independent
Vulnerability The entity describes a vulnerability which was found on a specific version of a software. Independent
Workstation The entity describes a desktop or laptop device. Dependent
Attribute(s) of "AppSoftware" Entity
Name Definition Is PK Is FK
SoftwareName The name that identifies the software. Yes Yes
Attribute(s) of "Criterion" Entity
Name Definition Is PK Is FK
CriterionName The name that identifies the criterion. Yes No
Threshold The specific criticality threshold for the criterion. No No
Weight Measures the relevance of the criterion and influences how it is taken into

account when assessing software criticality.
No No

Attribute(s) of "CustomSoftware" Entity
Name Definition Is PK Is FK
SoftwareName The name that identifies the software. Yes Yes
Attribute(s) of "DataCenterResources" Entity
Name Definition Is PK Is FK
SoftwareName The name that identifies the software. Yes Yes

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 84 of 87

Attribute(s) of "Dependencies" Entity
Name Definition Is PK Is FK
DependsOnSoftwareName The name that identifies a software on which the software under analysis

depends on.
Yes Yes

DependsOnVersionNumber The name that identifies the version of a software on which the software
under analysis depends on.

Yes Yes

SoftwareName The name that identifies the software. Yes Yes
VersionNumber Reports the version the software is, or was. Yes Yes
Attribute(s) of "DevelopmentPlatform" Entity
Name Definition Is PK Is FK
SoftwareName The name that identifies the software. Yes Yes
Attribute(s) of "License" Entity
Name Definition Is PK Is FK
LicenseType The specific type of the license, which refers to a specific standard. Yes No
LicenseContact The name of the reference person for the license. No No
OrganizationName The name that identifies the organisation that defined the license. No Yes
Attribute(s) of "LicenseCompliance" Entity
Name Definition Is PK Is FK
SoftwareName The name that identifies the software. Yes Yes
LicenseType The specific type of the license, which refers to a specific standard. Yes Yes
Attribute(s) of "MobileDevice" Entity
Name Definition Is PK Is FK
SystemName The name that identifies the system. Yes Yes
Attribute(s) of "MobileSoftware" Entity
Name Definition Is PK Is FK
SoftwareName The name that identifies the software. Yes Yes
Attribute(s) of "OperatingSystem" Entity
Name Definition Is PK Is FK
SoftwareName The name that identifies the software. Yes Yes
Attribute(s) of "Organization" Entity
Name Definition Is PK Is FK
OrganizationName The name that identifies the organisation. Yes No
Location The physical location (i.e. place) the headquarters of the organisation is

stationed.
No No

Description Further details on the organisation. No No
Attribute(s) of "RuntimeSoftwarePlatform" Entity
Name Definition Is PK Is FK
SoftwareName The name that identifies the software. Yes Yes
Attribute(s) of "Server" Entity
Name Definition Is PK Is FK
SystemName The name that identifies the system. Yes Yes
Attribute(s) of "Software" Entity
Name Definition Is PK Is FK
SoftwareName The name that identifies the software. Yes No
Description Further details about the software. No No
IsCritical Tells if the software belongs to the Software Critical Shortlist. No No
AOWName The application owner name. No No
AOWPosition The application owner position. No No
Developer The development entity that designed the software. No Yes
SoftwareType It defines the type of the System: application software, custom software,

mobile software, runtime platform, operating system, development
platform or data center resources.

No No

Attribute(s) of "SoftwareCriteria" Entity
Name Definition Is PK Is FK
SoftwareName The name that identifies the software. Yes Yes
CriterionName The name that identifies the criterion. Yes Yes
Rating The value of the criterion for the specific software. No No
Attribute(s) of "SoftwareInstance" Entity

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 85 of 87

Name Definition Is PK Is FK
SoftwareName The name that identifies the software. Yes Yes
SystemName The name that identifies the system. Yes Yes
VersionNumber Reports the version the software is, or was. Yes Yes
Size The memory space (in MB) the instance needs. No No
Attribute(s) of "SoftwareVersion" Entity
Name Definition Is PK Is FK
SoftwareName The name that identifies the software. Yes Yes
VersionNumber Reports the version the software is, or was. Yes No
Attribute(s) of "SoftwareVulnerabilities" Entity
Name Definition Is PK Is FK
SoftwareName The name that identifies the software. Yes Yes
VersionNumber Reports the version the software is, or was. Yes Yes
VulnerabilityName The name that identifies the vulnerability type. Yes Yes

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 86 of 87

Attribute(s) of "Standard" Entity
Name Definition Is PK Is FK
StandardisationBody The organisation that defined the standard. No No
StandardName The name that identifies the standard. Yes No
Description Further details about the standard. No No
StandardisationBody A reference to the Standard content. No Yes
ECContext The European Community Context the standard is related to. No No
Documentation The documentation that the standard have, in text format. No No
ParentStandardName The name that identifies the standard which references or contains this

standard.
No Yes

Attribute(s) of "StandardCompliance" Entity
Name Definition Is PK Is FK
SoftwareName The name that identifies the software. Yes Yes
StandardName The name that identifies the standard. Yes Yes
Attribute(s) of "System" Entity
Name Definition Is PK Is FK
SystemName The name that identifies the system. Yes No
Vendor The Organization that produces the system. No Yes
Model The specific model of the machine, comprehensive of producer and

version.
No No

RAM It measures the Random Access Memory size of the machine. No No
IsVirtual It tells if the machine is a Virtual Machine. No No
ManagingOrganization The name that identifies the organisation that manages the system. No Yes
SystemType It defines the type of the System: mobile device, server or workstation. No No
SoftwareName The name that identifies the software. No Yes
Attribute(s) of "Vulnerability" Entity
Name Definition Is PK Is FK
VulnerabilityName The name that identifies the vulnerability type. Yes No
Source The affected software’s source code. No No
Description Further details on the vulnerability. No No
Impact An indicator of the expected harm received if the vulnerability is actually

exploited.
No No

Remediation The description of the required actions to resolve the vulnerability. No No
Attribute(s) of "Workstation" Entity
Name Definition Is PK Is FK
SystemName The name that identifies the system. Yes Yes

The European Commission’s Open Source Software and Tools Inventory Methodology

Page 87 of 87

APPENDIX: ABBREVIATIONS AND ACRONYMS

ABAC / ABAC Asset Corporate Ordering and Asset management
system

BYOD Bring Your Own Device

DIGIT Directorate-General for Informatics

CMDB Configuration Management Data Base

CSV Comma-Separated Values

EC European Commission

ETL Extract, Transform and Load

FOSSA Free & Open Source Software Application

HR Human Resources

IT Information Technology

MDM Mobile Device Management

NIST National Institute of Standards and Technology

OS Operating System

OSI Open Source Initiative

OSS Open Source Software

OSVDB Open Source Vulnerability Database

PC Personal Computer

RHEL Red Hat Enterprise Linux

SAN Storage Area Network

SCCM System Centre Configuration Manager

SDL Software Development Library

SLA Service Level Agreement

Svn Subversion

