
Application
Architecture

Leos version:

Modified on:

Version of the manual:

3.0

06.04.2020

1.0

LEOS

1

1. Leos Component Structure

Leos release package is divided into 3 major tiers: presentation, business logic and data
tier.

1.1 Leos Application Architecture

The Leos application architecture is spread across two tiers: presentation and business logic
tier.

The presentation tier includes:

 GUI components (web-presentation) – groups all the UI related components

(screens, components, windows)
 Presenters (web-presentation) – encapsulates all the logic for web-actions: calls

specific services from business logic layer and prepares the required data for the
next GUI component

2

 WS Entry-points (WebServices) – validates the input data and calls specific
BusinessObjects to execute the actual logic if the input is valid and the caller has
access to the requested function

 Business Objects (WebServices) – calls specific services from business logic layer
and prepares the required data for the response (if any)

The business logic tier includes:

 Services –it encapsulates all logic for handling various requests
 Repositories – hold the read/write access to all the data used by the application

 Integration – encapsulates all the logic for accessing third party applications

The data tier includes:

 User Repo DB – holds all the data required for the application to run (users,
configurations, documents metadata, etc).

 CMIS Server – holds the documents content.
 leosPermissions.xml - this defines the mapping between leos application roles and

permissions.
 Annotation DB server - holds the annotation content.

1.2 Technologies used:

 Vaadin 8
 Spring for wiring

 Spring data - jpa
 Hibernate
 CMIS
 WS-Provider: JRC standard for REST
 Mockito

 CkEditor
 AngularJS - annotation client

3

2. Web Component Architecture

The web is using the MVP (Model-View-Presenter) pattern, the Supervising Controller
variant. The below diagram depicts the interactions that exist in Leos using the MVP-SC
strategy:

The purpose is to decouple the building of the view from the logic around the view. Moving
all the logic of handling user events inside the controller makes the Leos
implementation scalable, ensures a clear separation of concerns, and facilitates unit-testing
of the behavior of the view.

2.1 JavaScript

The Document edition is done using CkEditor. Besides the CkEditor library, we are providing
custom plugins for CKEditor in order to provide additional features that fit the purpose of
AkomaNtoso XML.

4

2.1.1 Structure

The JavaScript files for CKEditor edition feature is part leos-js module and is present in war.

 In leos-js module, we have:

- lib folder – consists of all the distributions used out of the box for e.g. (CKEditor,
jQuery, requirejs, stampit, jsTree, lodash etc.);

- profiles folder – consists of the files used to configure/create different editing
profiles for the akn elements that can be modified using CKEditor (eg, for Article editing
profile is inlineAknArticle.js);

- transformer – encapsulates all the files related to akn-to-html transformations;

- core – consists of the common logic used across the editor;

5

- plugins folder – encapsulates all the custom plugins specifically designed for edition
functionality for akn elements like: paragraphs, subparagraphs, points, alinea etc. It also
consists of additional plugins like: table support, cross-references, authorial note,

comments, highlights etc.;

- test folder – consists of all the jasmine spec tests (Integration and unit);

- leosBootstrap.js – Implementation of CKEditor and all the javascript bootstrap logic;

- leosMouleBootstrap.js – Additional configuration to be passed to specified modules;

2.1.2 Implementation strategy

There are two main areas where implementation is done: Plugin and Transformer.

 Plugin implementation works as plug-n-play. If the plugin is loaded in the profile the
feature will be available for the editor. There are two types of plugins used in Leos.

o CKEditor internal plugins, which comes with the distribution of CKEditor
library.

o Custom plugins, which are implemented to support the edition and
transformation from akn to html and vice-versa. The plugin consists of
transformation configuration used by the transformer and additional logic.

 Transformer encapsulates the logic to transform an element from akn-to-html and
vice-versa based on the transformation configuration provided to it as input from the
custom plugins.

6

3. Deployment

Each module except the web module will be built as a jar. The packaging will be made as a
single war and all the jars corresponding to the Leos modules will be copied as
dependencies.

The resulting WAR archive will be deployed in a JEE 5 compliant application server.

In order to run the application, a database and a CMIS server are required.

The below image shows the deployment nodes required to run Leos application.

7

4. Leos Modules dependency

8

5. Leos External APIs

5.1 APIs

This API has been created for the integration of LEOS with other external systems.

The current status is the following.

Path "/token"

Params

Signature

@RequestMapping(value = "/token", method = RequestMethod.GET,
produces = MediaType.APPLICATION_JSON_VALUE)
@ResponseBody
public ResponseEntity<Object> getToken(HttpServletRequest request,

HttpServletResponse response)

Response Json object with the Token

Path "/secured/compare"

Params

Mode - values accepted: SINGLE_COLUMN_MODE = 1; TWO_COLUMN_MODE
= 2;
firstContent – in xml

secondContent - in xml

Signature

@RequestMapping(value = "/secured/compare", method =
RequestMethod.POST, produces =

MediaType.APPLICATION_JSON_UTF8_VALUE)
@ResponseBody
public ResponseEntity<Object> compareContents(HttpServletRequest
request, @RequestParam("mode") int mode,
@RequestParam("firstContent") MultipartFile firstContent,

@RequestParam("secondContent") MultipartFile secondContent)

Response Json object with the result of the comparison in html.

Path "/secured/search/{userId}"

Params userId

Signature

@RequestMapping(value = "/secured/search/{userId}", method =

RequestMethod.GET, produces = MediaType.APPLICATION_JSON_VALUE)
@ResponseBody
public ResponseEntity<Object> getProposalsForUser(

@PathVariable("userId") String userId)

Response Json object with the proposals and leg files that the userid can export

9

Path "/secured/searchlegfile/{legFileId}"

Params legFileId

Signature

@RequestMapping(value = "/secured/searchlegfile/{legFileId}", method
= RequestMethod.GET, produces =
MediaType.APPLICATION_OCTET_STREAM_VALUE)
@ResponseBody
public ResponseEntity<Object> getLegFile(

@PathVariable("legFileId") String legFileId)

Response Leg file requested

Path "/secured/renditionfromleg"

Params legFile - values accepted: PDF = "pdf"; LEGISWRITE = "lw";

Signature

@RequestMapping(value = "/secured/renditionfromleg", method =
RequestMethod.POST, produces =
MediaType.APPLICATION_OCTET_STREAM_VALUE)

@ResponseBody
public ResponseEntity<Object> getPdfFromLegFile(

@RequestParam("legFile") MultipartFile legFile,

@RequestParam("type") String type) {}

Response The PDF or the LegisWrite file

10

5.2 External APIs Authentication

