p

.
¥
** **
o4
****
.

LEOS



1. Leos Component Structure

Leos release packageis divided into 3 major tiers: presentation, business logic and data
tier.

LEOS Application

Client Side

Browser External Application Annatation Client

Server Side

Shared Modules Presentation Tier

‘Web Serviees End Points.

Business Logic Tier

Java services

v
Repasitory Integration
User Info Prowoar
ons
Implamentaton

I

LEOS cors. Exterral Documert Provder }
repoziey mertace
Authontication Proviler

Data Tier

Thind Barty Applications

|

1.1 Leos Application Architecture

The Leos application architecture is spread across two tiers: presentation and business logic
tier.

The presentation tier includes:

¢ GUI components (web-presentation) — groups all the UI related components
(screens, components, windows)

e Presenters (web-presentation) — encapsulates all the logic for web-actions: calls
specific services frombusiness logic layer and prepares the required data forthe
next GUI component



e WS Entry-points (WebServices) - validates the input data and calls specific
BusinessObjects to execute the actual logic if the input is valid and the caller has
access to the requested function

e Business Objects (WebServices) - calls specific services frombusiness logic layer
and prepares the required data for the response (if any)

The business logic tier includes:

e Services -it encapsulates all logic for handling various requests
e Repositories — hold the read/write access to all the data used by the application
e Integration - encapsulates all the logic for accessing third party applications

The data tier includes:

e User Repo DB - holds all the data required for the application to run (users,
configurations, documents metadata, etc).
CMIS Server - holds the documents content.
leosPermissions.xml - this defines the mapping between leos application roles and
permissions.

e Annotation DB server - holds the annotation content.

1.2 Technologies used:

Vaadin 8

Spring for wiring

Spring data - jpa

Hibernate

CMIS

WS-Provider: JRC standard for REST
Mockito

CkEditor

Angular]S - annotation client



2. Web Component Architecture

The web is using the MVP (Model-View-Presenter) pattern, the Supervising Controller
variant. The below diagramdepicts the interactions that exist in Leos using the MVP-SC
strategy:

class web-architectrue
e e autowired »> === === —————————— I
Hitp Session Security Context Event Bus
S \BQ
<<inferface>> Presenter
View Component Senvice
. - | enter() “void —
---------- Request>> ——————2v_ cgitflement() :vaid f————=—========—————3] * persisiModel(model) :void
EventBus + saveElement() -void
[<~————~<<Response==_______ | + deleteElement() void
. 4
ul Model
Component(Vaadin)

+ init() void
+ attach() :void
+ detach() :void

The purpose is to decouple the building of the view from the logic around the view. Moving
all the logic of handling user eventsinside the controller makes the Leos

implementation scalable, ensures a clear separation of concerns, and facilitates unit-testing
of the behavior of the view.

2.1 JavaScript

The Document edition is done using CkEditor. Besides the CkEditor library, we are providing
custom plugins for CKEditor in order to provide additional features that fit the purpose of
AkomaNtoso XML.



2.1.1 Structure

The JavaScript files for CKEditor edition featureis part leos-js module and is present in war.

b 5 [leos-js]

i sMC

LY

etc

b main

L*)

assets

hd core
s leosConfig.s
i51 leosUitils.js
W editor
core
plugins

profiles

L R

transformer

15 leosEditorConnectorjs
15 leosEditorExtension.js
lib
rendition
ui

s leosBootstrap.js

35 leosModulesBootstrap.js
W lib
ckeditor 4.9.2
cuid 1.3.8
dateFormat_1.2.3
JgTree 1,49

Y R e "

In /eos-js module, we have:

- lib folder — consists of all the distributions used out of the box for e.g. (CKEditor,
jQuery, requirejs, stampit, jsTree, lodash etc.);

- profiles folder — consists of the files used to configure/create different editing
profiles for the akn elements that can be modified using CKEditor (eg, for Article editing
profile is inlineAknArticle.js);

- transformer — encapsulates all the files related to akn-to-html transformations;

- core - consists of the common logic used across the editor;

4



- plugins folder — encapsulates all the custom plugins specifically designed for edition
functionality for akn elements like: paragraphs, subparagraphs, points, alinea etc. It also
consists of additional plugins like: table support, cross-references, authorial note,
comments, highlights etc.;

- test folder — consists of all the jasmine spec tests (Integration and unit);
- leosBootstrap.js — Implementation of CKEditor and all the javascript bootstrap logic;

- leosMouleBootstrap.js — Additional configuration to be passed to specified modules;

2.1.2 Implementation strategy
There are two main areas where implementation is done: Plugin and Transformer.

e Plugin implementation works as plug-n-play. If the plugin is loaded in the profile the
feature will be available forthe editor. There are two types of plugins used in Leos.
o CKEditor internal plugins, which comes with the distribution of CKEditor
library.
o Customplugins, which are implemented to support the edition and
transformation fromakn to html and vice-versa. The plugin consists of
transformation configuration used by the transformer and additional logic.

¢ Transformerencapsulatesthe logic to transforman element from akn-to-html and
vice-versa based on the transformation configuration provided to it as input from the
customplugins.



3. Deployment

Each module except the web module will be built as a jar. The packaging willbe made as a
single war and all the jars corresponding to the Leos modules will be copied as
dependencies.

The resulting WAR archive will be deployed in a JEE 5 compliant application server.

In orderto run the application, a database and a CMIS server are required.

The below image shows the deployment nodes required to run Leos application.

deployment

<<devices>>
Desktop/Mobile Web Browser

.J

<<Apache Tomcat>>
Hosting LEOS Application

Application Server

L A

=<CMIS Server=>

==Server>>
Hosting User Repo

In-menory repo

(with leos release) OR

iy
[ )




. Leos Modules dependency

Module 'leos-web’

Module 'lecs-ui’

|

Medule 'lecs-js'

.

Module 'leos-use-cases’

v

Module 'leos-services'

=

v vy

Medule 'leos-repositery’

\_¢

|

E A 2 20 7

Meodule 'lecs-integration’

#*\ri

Module 'leos-i18n'

Yy

Module 'lecs-security’

+mw¢+

Medule 'lecs-domain’




5. Leos External APIs

5.1 APIs

This API has been created for the integration of LEOS with other external systems.

The current status is the following.

Path "/token"

Params
@RequestMapping(value = "/token", method = RequestMethod.GET,
produces = MediaType.APPLICATION_JSON_VALUE)

Sighature | @ResponseBody
public ResponseEntity<Object> getToken(HttpServletRequest request,
HttpServietResponse response)

Response | Json object with the Token

Path "/secured/compare"
Mode - values accepted: SINGLE_ COLUMN_MODE = 1; TWO_COLUMN_MODE

Params firstContent - in xml
secondContent - in xml
@RequestMapping(value = "/secured/compare”, method =
RequestMethod.POST, produces =
MediaType.APPLICATION_JSON_UTF8_VALUE)

Signature @ResponseBody
public ResponseEntity<Object> compareContents(HttpServietRequest
request, @RequestParam("mode") int mode,
@RequestParam("firstContent") MultipartFile firstContent,
@RequestParam("secondContent") MultipartFile secondContent)

Response | Json object with the result of the comparison in html.

Path "/secured/search/{userIld}"

Params |userld
@RequestMapping(value = "/secured/search/{userIld}", method =
RequestMethod.GET, produces = MediaType.APPLICATION_JSON_VALUE)

Si t @ResponseBody

Ignature | b, blic ResponseEntity<Object> getProposalsForUser(

@PathVariable("userId") String userld)

Response | Json object with the proposals and leg files that the userid can export

8




Path "/secured/searchlegfile /{legFileId}"

Params |legFileld

@RequestMapping(value = "/secured/searchlegfile / {legFileId}", method
= RequestMethod.GET, produces =
MediaType.APPLICATION_OCTET_STREAM_VALUE)

Signature | @ResponseBody

public ResponseEntity<Object> getLegFile(

@PathVariable("legFileId") String legFileId)

Response | Leg file requested

Path "/secured/renditionfromleg"

Params |legFile - values accepted: PDF = "pdf"; LEGISWRITE = "lw";

@RequestMapping(value = "/secured/renditionfromleg"”, method =
RequestMethod.POST, produces =
MediaType.APPLICATION_OCTET_STREAM_VALUE)
@ResponseBody

Signature | public ResponseEntity<Object> getPdfFromLegFile(

@RequestParam("legFile") MultipartFile legFile,

@RequestParam("type™") String type) {}

Response | The PDF or the LegisWrite file




5.2 External APIs Authentication

1. Client generates JWT Token and Sign it
its Secret

- Clientld

- Secret

2. Authenticate in LEOS, asking an
Access Token <accessToken>, through
endpoint Aoken

3. Call the other secured points passing
the <accessToken> in the headers

(Client application

Japiftoken

7777777777777777777777 >

HEADERS
grant-type: jwt-bearer

assertion: <Jut Token> generated using HMAC256 Algorithm

with clientid and clientSecret

Japi/secured/endpoint1

HEADERS
Authorization: Bearer <accessToken>

token can be verified by
any of the present clients secret

If yes, authentication is done, 5o we
generale the accessToken Signing it
with LEOS secret key.

‘Al calls 1o fapi/secured/ are intercepted ™
by LeosApiAuthenticationFiter
which check if the provided accessToken
can be verified by LEOQS secret

If yes, authentication will be consider valid
and the endpoint will be called

In LEOS propertie file

A List of client's secret (used to decrypt tokens sent by the clients):
- appiClientld

- app1Secret

- app2Clientid

- app2Secret

appNCiientid
- appNSecret

B) LEOS secret used to encryptidecrypt accessTokens sent to the
clients in order to use the /api

10




