X-DIS /0SS D5 — Version 0.3

Contract n 14400.2005.004-2007.717 CS 6
Framework contract ENTR/05/066/IDABC/OSOR
IDABC Open Source Observatory and Repository (OSOR)

Guidelines on publishing and sharing existing
software as Open Source

Specific Contract No 6 (SC6)
of 20 December 2007

X- DIS /OSS Phase 3

Version 2.0
Authors: Rudiger Glott (MERIT)
Patrice-Emmanuel Schmitz (UNISYS)
Editor: Emidio Stani (UNISYS)
May 6, 2009

Page 1 of 24

X-DIS /0SS D5 — Version 0.3
Disclaimer

The opinions expressed in this study are thosdefauthor(s) and do not necessarily reflect the
views of the European Commission.

Copyright
This report is copyright © 2009 the European Consiois

Page 2 of 24

X-DIS /0SS D5 — Version 0.3

Table of Contents

1 Purpose Of these gUIAEINES............o e 4
2 Reasons for public sector institutions to engad@pen Source Softwarec.c.vvvvvveeeeeen. 4
G €10 1o = 11 =S USSPPPPP 6
3.1 Make sure you are the copyright owner of tHeAGTe............cceeveeiiiiiiiiiieeeeee, 6
3.2 Be aware Of “Marketing” ISSUESoiic ettt e e e e e e e e e e ee e e e e e e e eeeeeeereennnne 7
3.3 Decide how you want to distribute your OpenrSelsoftware (Licensing issues)............... 12
3.3.1 General ICENSING ISSUBSottt ittt e e e e e ettt bbb e e e e e e e e e aaeas 12
GG T2 0= 1IN [T = o =] T USRS 14
3.3 3 PraCHCAl ISSUES ...ttt et e e e et et e e e e e e e e e et e e e e et it b e e as 14
3.3.4 Tracking iNtelleCtual PrOPEITYoummmssserreeeeeeeeeeeeetreeeeereeiren e e e aeaeeaees 15
4 TechniCal INFTASITUCTUIE ...ttt e e e e e e e e e e e e eaaaas 16
oI = [T= TS o PSRRI 17
5.1 RECOMMENAALIONSottt e e e e e e e ettt et sseeeea s s e e e e e e e e e e aeeeeeeesennnnns 17
5.2 SOUICE COUR ...uutiiiiiiiiiiiiiiee et e e ommmmm bbbttt ettt et e e e e e e e e e e e e e s s s snne ittt eeeeeeaaaeeeeaeasesnaannanes 19
5.3 DOCUMIEBNTALION ...t e ettt e e e e e et e e e e e e e e eaaeabs s e s e e e e e e e e eaeeeeeeeeesnnnnes 20
LS - 1o €= T |1 T PSS 20
RS 51 7= [T SRR PPPRRPPRRTRP 21
6 Good practices for using the OSOR fOIQE ...eemeeemrrrrniiiiiiieee et e e e e e 22
7 Making use of the OSOR community “OSS and StasiSt.........ccoovveieiiiiiiiiiiiieiieeeee e 23

8 Helpful software

Page 3 of 24

X-DIS /0SS D5 — Version 0.3

1 Purpose of these guidelines

This document gives the guidelines for packagindg anblishing Eurostat software as Open
Source. Its intended audience are project offie@s contractors. The purpose of this document is
to contribute to advancing the existing guidelifies writing and publishing software as Open
Source. Fogélpoints out that Open Source Software distribuiombines two fundamental tasks:
The software needs to acquire users, and it needsduire developers. The following paragraphs
explore aspects of the open source software digiol process from the perspective of the
copyright owner because owning the copyright isiratispensable condition for distributing the
software.

These guidelines will cover the following aspects:

a) Understanding why Open Source Software is an oppibytfor the public sector

b) Understanding copyright aspects related to theveo#t and its components;

c) Examination of licences and their aspects, inclgdime European Union Public Licence
(EUPL) and its compatibility with other licences;

d) Recommendation of the appropriate distributionnez(single or dual licensing);

e) “Practical guidelines” (e.g. mentions to inserttlre source code, website or repository for
accessing code and licensing information).

f) Prepare the work and define objectives;

g) ldentify components or solutions that could bertisted;

h) Organise a distribution strategy;

i) ldentify the distribution licence;

J) Organise a distribution team (leader, sponsordyiboriors, other stakeholders);

k) Motivate the internal community;

[) Enlarge community and motivate external contribstor

m) Pool efforts with other stakeholders sharing theesaeeds.

These steps and corresponding efforts are not lggogdortant, depending on the ambition of the
project. It is also obvious that some of these stguch as pooling efforts) may obviously be
present in “non Open Source” approaches as well.

2 Reasons for public sector institutions to engage Open Source
Software

The information economy is now in the range of 1624GDP in most developed countries, and
Public Sector participates to a very substantial @it (20%Y. Governments are trying to optimise
their methods, to build more efficient interactiovith citizens and enterprises (through e-
Government) and to optimise the instruments thathaeded by decision makers to adopt the right
policies (through developing reliable tools prowiglia correct picture of the reality and facilitgtin
the forecast of the future).

! Karl Fogel (2007): Producing Open Source Softwadiew to Run a Successful Free Software Project.

Available online athttp://producingoss.com/en/index.html
For detailed report, see the November 2006 studyre “Economic Impact of Open Source Software on
innovation and the competitiveness of the ICT seict&U” — By Rishab Aiyer Ghosh — UNU-Merit

Page 4 of 24

X-DIS /0SS D5 — Version 0.3

If you or your administration participates to timyestment, you must be committed to obtain the
best value from taxpayer’s money, and to ensureitkrastments will not become obsolete within a
short period.

Software goods are not like material goods: thay loa duplicated and distributed without any
additional costs. Even more important, their vahey increase with wide use and distribution. At
the contrary of a diamond or of a famous paintevtwk (which have more value if they are
unique), software will gain value if it is used &wide community of users at a point to become “a
recognised standard”.

In the hands of proprietary software industry, ssithation may become a monopoly. In the hands
of public sector that have no commercial objectsuesh promotion of their work may provide more
chances that investments are sustainable, wileleldped and maintained because responding to a
larger need. This could happen if:

a) The software is used, corrected and improved bwitlest possible community;

b) Improvements are returned to everyone (including tmiginal donator) and are not
exclusively appropriated.

c) Other public administrations (in other countrieshagimilar needs or obligations) do the
same, accelerating comparison, the selection dfdsastices and innovation.

Open Source Software provides a software distobutmodel corresponding to the above
conditions. Open source software is software willeeeauthor (the 'licensor’) gives a number of
fundamental freedoms to the user (the 'licensegaicense agreement. These freedoms include
the possibility to study how the programme worksadlapt the code according to specific needs, to
improve the programme, to run it for any purposeaaog number of machines and to redistribute
copies to other usetslt is necessary to note that just allowing acdesshe source code of a
software system, or allowing its free download doeesmake it open source. Precisions concerning
the term “Open Source” and the related freedomsakdished by a non-profit organisation, the
OSF. The term “Free software” is a quasi synonym prudy another organisation, the P@Rd

the acronyms FOSS or FLOSS are frequently usedrthine both terminologiés

The open source software development and businesklsndiffer from the closed source or
proprietary models that are generally applied l®y ldrge software industry vendors. Differences
include the way the software is developed, bundlegackaged, the roles played by participants
and the way to obtain support if you position yelfr&s a user. Both models, Open Source and
proprietary, share common issues such as secqguslity and as far as applicable warranty and
liability.
From the public sector point of view, the Open $eunodel represents several advantages:
a) Using software at reduced entry cost (as it isctse for any other Open Source user)
b) Promoting and distributing its own software produwct which produces tangible benefits:
the more a software is used and becomes a “stanith@ dreatest is its value, its number of
users as the number of technical experts (devedppasiness specialists) that will rely on it

3 IDABC — Open Source introductiohttp://ec.europa.eu/idabc/en/chapter/468
4 OSI — Open Source Initiativattp://www.opensource.org/docs/definition.php
5
6

FSF — Free Software Foundatidutip://www.fsf.org/

FOSS = “Free & Open Source Software”, FLOSS reé&-Libre & Open Source Software” to express tfear
that “Free” means “freedom “ and not that the edatoftware is always given for free. FLOSS is Ipeiog the
preferred acronym used in specialised Europeanestud

Page 5 of 24

X-DIS /0SS D5 — Version 0.3

and improve its quality.

c) For public sector, Open Source licensing facilgaseich sharing by protecting the public
administration copyright and avoiding (dependinglom licence) that the software could be
appropriated by a third party. It fits also withetlpublic service philosophy, which is
generally not focused on constructing commerciappetary business by selling software
that was already funded by taxpayer’s money.

3 Guidelines

3.1Make sure you are the copyright owner of the softea

Computer software is protected by copyright lawpgaht law gives the owner of a work certain
rights over it, and makes it illegal for othersuse the work as if it were his/hers. Owning the
copyright in a piece of work, whether literary apgrammatic, means that the author decides who
can copy it, adapt it and distribute it. By defaokly the owner can do these things. Anyone who
copies, changes or distributes someone else’s withiout permission can become subject of legal
action. Copyright comes into being automaticallysaen as a work is ‘fixed’, meaning as soon as
the work is recorded in some way. There is thuseed for gaining copyright, to register the work
or to mark it s copyrighted, with a © symbol. Wi software may also well result in more than
one piece of property: a program’s source coderapgrty, as can be the preparatory design
material for it, its general organisation and gewinterface.

When someone writes software, he/she creates pyopsr default, this property will be owned by
somebody. As a piece of Open Source software igldped often by many different people and
groups, its ownership becomes more and more compésxies relating to collaboration and
ownership apply also to unplanned collaborationsroa period. It is conceivable for every
contributor to own the copyright to their contritaurt.

In the case of the public sector, ownership of Opeuarce Software can be generated as follows:

a) If the writer is an employee or an official of ahtic administration, it is likely that this
administration will own the software created.

b) If the developer is working for him/herself, or Worg in his/her free time on matters
unrelated to the work he/she is supposed to delivisrlikely that he/she will own it.

c) On the contrary, if the developer is working foe tadministration as a service provider
under a contract agreement, the owner of the regulhtellectual property should be
defined in the contract. If the contract does reftree who will own the property, then it is
likely that the contractor who ordered the worklwilvn it. Ideally, it should be agreed on
who will own what before the works begins.

In several cases, the situation is not quite aarcikeparts of the existing development were dbye
contractors, it must be clarified if the developmeontract confers full property rights to the pabl
authority, with the right to redistribute it withbany limitation. Such limitations may concern
situations where the software is only licensed;auid be redistributed:

Page 6 of 24

X-DIS /0SS D5 — Version 0.3

only into the same administration

to a limited number of users

to a class of users (officials, civil servants)

for a specific country or geographic area

for a limited purpose (public administration, namanercial)
etc.

If any of such limitation exists, there is no falvnership on the related components, meaning that
the component should be:

e changed (adopted from another Open Source projétsunilar functionalities)

e adapted (from an existing Open Source project vlithe functionalities)

e rewritten (replacing proprietary code by new, oraicode).

Quite often, development contracts contain a dattar of “transferring ownership” or “exclusive
ownership” to the public authority, meaning that ttontractor transfers all his rights to the public
authority and will not re-sell the same solutionck a contract should be reinforced by authorising
public disclosure of the code (and granting thelipiduthority an indemnity against actions in case
of copyright or patent infringement) and authomsipublic licensing of the code by the public
authority (and granting the exact model of licernloat could be used then, depending on the
possible licences of the components embedded isdfteare).

3.2 Be aware of “marketing” issues

The explicit purpose of software distribution issjaread the software and to increase the user and
developer base. In order to attract attention dfext and to ease the adoption and further
advancement and distribution of your software, dianpe with a few basic recommendations
should be considered:7

e Choose a Good Name

o0 A good name should give some idea what the praiees, is easy to remember, is not
the same as some other project's name, and doeagnmgde on any trademarks.

o If possible, the name should be available as a domame in the .com, .net, and .org
top-level domains. Fogel recommends to pick “.argbrder to advertise as the official
home site for the project; the other two shouldvend there and are simply to prevent
third parties from creating identity confusion anduhe project's name.

e Have a Clear Mission Statement

0 A mission statement serves the purpose to prowuioer® with a quick description of the
project and the software. It should be so shortcear that readers can decide within 30
seconds whether or not they're interested in lagrmore. The mission statement should
be prominently placed on the front page, preferaiglyt under the project's name.8

! This section follows the recommendations giverKayl Fogel (2007): Producing Open Source Software

How to Run a Successful Free Software Project. |Alsbg online ahttp://producingoss.com/en/index.html

8 Fogel (2007) provides as an example of a goodianisstatement the one that is used by OpenOffige.o
(http://www.openoffice.org! “To create, as a community, the leading intéomeat! office suite that will run on all
major platforms and provide access to all functityand data through open-component based APIsaandML -
based file format.” Fogel highlights following aditages of this mission statement: “In just a fewdsothey've hit all
the high points, largely by drawing on the readerisr knowledge. By saying "as a community", tisggnal that no
one corporation will dominate development; "intdimigal” means that the software will allow peoplentork in
multiple languages and locales; "all major platfetmmeans it will be portable to Unix, Macintoshdafindows. The
rest signals that open interfaces and easily utatedable file formats are an important part ofgbal. They don't
come right out and say that they're trying to leea alternative to Microsoft Office, but most péopan probably read

Page 7 of 24

X-DIS /0SS D5 — Version 0.3

e State That the Project is Free

o Fogel (2007) strongly demands that “the front pagest make it unambiguously
clear that the project is open source.” He pointistbat many projects forget to do
this, which may result in loosing many potentialvelepers and users. Fogel
recommends to “state up front, right below the roisstatement, that the project is
"free software" or "open source software”, and ghaexact license.”

e Features and Requirements List

o A brief list of the features the software suppoatsd the kind of computing
environment required to run the software would hedpple who are interested in he
software to understand what the software does addruvhich conditions it can be
used. If features that are not completed yet aren@&ed as "planned" or "in
progress”, (potential) users and developers widbatee how the software will
probably develop in future.

e Development Status

0 A development status page, listing the projectar#erm goals and needs, informs
people about how a project is doing in terms ofeligyment, maintenance, releases,
and responsiveness towards bug reports, etc., dether the software is available
as alpha and/or beta version.9 Fogel points odt ttiea development status page
must not look ready.

* Downloads

0 You should offer interested people to download sloétware as source code in
standard formats. According to Fogel (2007), bin@xyecutable) packages are not
necessary when a project is first getting startexicépt for software with so
complicated build requirements or dependenciesrttatly getting it to run would
be a lot of work for most people, which Fogel recoamds to avoid anyway because
it it creates a strong obstacle towards attraadexglopers).

o0 The distribution mechanism should be as convenstahdard, and low-overhead as
possible.

o Software should comply with standard build andaliation methods, as deviations
from these standards would create confusion arfetulifes for potential users and
developers. As Fogel points out, this is somethoge thought about very early,
and not only when the code is close to being ready.

o In this context, Fogel recommends that in gendpatihg work with a high payoff
should always be done early, and significantly lomgethe project's barrier to entry
through good packaging brings a very high payoff.”

0 Using unique version numbers for different releasesmportant for people to
compare any two releases and know which superst@eother. (see also the
chapter on release management below).

between the lines. Although this mission statentmokts broad at first glance, in fact it is quiteccimscribed: the
words "office suite” mean something very concretthbse familiar with such software. Again, thedess presumed
prlor knowledge (in this case probably from MS ©dfj is used to keep the mission statement concise.”

“The term alpha usually means a first releas#) which users can get real work done and whichelidbe
intended functionality, but which also has knowg&urhe main purpose of alpha software is to gémdeadback, so
the developers know what to work on. The next sthgt, means the software has had all the sebiags fixed, but
has not yet been tested enough to certify for sele@he purpose of beta software is to either bedbm official
release, assuming no bugs are found, or providele@tfeedback to the developers so they can ricbfficial
release quickly. The difference between alpha atd is very much a matter of judgement.” (Karl Hqge07):
Producing Open Source Software - How to Run a SisfokFree Software Project. Available online at
http://producingoss.com/en/index.htjl

Page 8 of 24

X-DIS /OSS

D5 — Version 0.3

» Version Control and Bug Tracker Access

(0]

Those users / developers who want to debug or eddfeatures to your software
need information about bug reports and bug fixestesw the code is changed over
time. Real-time access to the latest sources Mged by a version control system,
and an overview of bugs and fixes is provided bpug tracking system. Bug
trackers often also track enhancement requestsjnta@ation changes, pending
tasks, and more. Fogel considers the existendeeskttools as so important that he
highly recommends to clearly state on your webiitg you intend to set them up
soon if you can't offer them right away.

e Communications Channels

(0]

(0]

Provision of the addresses of mailing lists, cluatms, and IRC channels, and any
other forums where others involved with the sofevean be reached enables visitors
to get in touch with the persons involved with f®ject. Fogel recommends to
make it clear that you and the other authors ofpitogect are subscribed to these
mailing lists, so people see there's a way to deexlback that will reach the
developers. He points out that your presence otidtseedoes commit you to answer
all questions or implement all feature requests.

In the early stages of a project user and develfqgams can be integrated in order
to have all discussions in one "room."

* Developer Guidelines

(0]

Those visitors who are interested in contributirng the project will look for
developer guidelines. As Fogel points out, “devefoguidelines are not so much
technical as social: they explain how the develepeteract with each other and
with the users, and ultimately how things get domasic elements of developer
guidelines are:

1. pointers to forums for interaction with other deoprs

2. instructions on how to report bugs and submit pegch

3. some indication of how development is usually dome-the project a

benevolent dictatorship10, a democracy, or somgteise

« Documentation

o

Something that is essential but lacking or providedow quality in many Open
Source Software projects is documentation. Thelpnolis, according to Fogel, that
documentation is never really finished.”

The most important documentation for initial usef®rms those about the basics:
how to quickly set up the software, an overviewhoiv it works, perhaps some
guides to doing common tasks. A problem might odoecause these things are
known very well by the writers of the documentatiovhich makes it sometimes
difficult for them to see things from the readgrtsnt of view, and to laboriously
spell out the steps that (to the writers) seem ls@oos as to be unworthy of
mention. (Fogel 2007)

Fogel recommends to use a simple, easy-to-editdbsuch as HTML, plain text,
Texinfo, or some variant of XML, as this helps pnaty to remove any overhead that
might impede the original writers from making incrental improvements, but also

10

Fogel explains this term as follows: “No pejovatsense is intended by "dictatorship”, by the visy.

perfectly okay to run a tyranny where one particdizveloper has veto power over all changes. Maogessful
projects work this way. The important thing is ttta¢ project come right out and say so. A tyranmtending to be a
democracy will turn people off; a tyranny that sissa tyranny will do fine as long as the tyremtompetent and

trusted.”

Page 9 of 24

X-DIS /OSS

D5 — Version 0.3

those who join the project later and want to wanktlee documentation.
0 Basic initial documentation should meet the follogviminimal criteria (taken from
Fogel 2007):

1.

2.

5.

“Tell the reader clearly how much technical exertithey're expected to
have.

Describe clearly and thoroughly how to set up thiéwsare, and somewhere
near the beginning of the documentation, tell teerhow to run some sort
of diagnostic test or simple command to confirnt tteey've set things up
correctly. Startup documentation is in some waysemimportant than actual
usage documentation. The more effort someone kastied in installing and
getting started with the software, the more pegsisshe'll be in figuring out
advanced functionality that's not well-documentéthen people abandon,
they abandon early; therefore, it's the earlieaged, like installation, that
need the most support.

Give one tutorial-style example of how to do a camnmask. Obviously,
many examples for many tasks would be even bditdrif time is limited,
pick one task and walk through it thoroughly. Osoeneone sees that the
software can be used for one thing, they'll saexplore what else it can do
on their own—and, if you're lucky, start filling ithe documentation
themselves. Which brings us to the next point...

Label the areas where the documentation is knowhetoncomplete. By
showing the readers that you are aware of its iéefces, you align yourself
with their point of view. Your empathy reassuresnththat they don't face a
struggle to convince the project of what's impartarhese labels needn't
represent promises to fill in the gaps by any paldir date —it's equally
legitimate to treat them as open requests for wekmhelp.

The last point is of wider importance, actuallydazan be applied to the
entire project, not just the documentation.

* Availability of documentation

o Documentation should be available online (direéthm the web site) and in the
downloadable distribution of the software.
0 Online documentation should include a link to th#ire documentation in one
HTML page in order to allow people searching fapecific word or phrase across
the entire documentation.
* Developer documentation

o Developer documentation helps programmers to utateisthe code, so they can
repair and extend it.
Fogel considers developer documentation to be velpful, but he sees no reason to
delay a release to do it. “As long as the origangthors are available (and willing) to
answer questions about the code, that's enoughatb with. In fact, having to
answer the same questions over and over is a conmudivation for writing
documentation. But even before it's written, deteed contributors will still
manage to find their way around the code” (Fogé&720
According to Fogel, wikis only work if the wiki iactively edited by a few people
who agree on how the documentation is to be orgdn&nd what sort of "voice" it
should have.
» Example Output and Screenshots
If the project involves a graphical user interfameif it produces graphical or

(0]

o

Page 10 of 24

X-DIS /0SS D5 — Version 0.3

otherwise distinctive output, Fogel recommends @b gome samples up on the
project web site. For interfaces he advises tosaseenshots; for output, screenshots
or just files might be useful. One of the advansagé screenshots is that they
convincingly demonstrate to the visitor of the wibthat the software really runs.

o While not necessary for the starting period, in filneire it might be useful to add
also features like a news page, a project histagepa related links page, a site-
search feature, a donations link, etc.

Canned Hosting

0 You can leave hosting the project and the softvwareeb services that offer free
hosting and infrastructure for open source projegtsveb area, version control, a
bug tracker, a download area, chat forums, redud@kups, etc. The advantage is
that you get existing infrastructure for free (witiuge server capacity and
bandwidth), the disadvantage is that you loose-di@éned control over the user
experience. The hosting service decides what sodttiee site runs, and may control
or at least influence the look and feel of the @ct§ web pages (Fogel 2007).11

o In the case of the public sector, the CIRCA IG G588 Statistics and the OSOR
(Open Source Observatory and Repository) - cugremtider development at the
European Commission (Informatics Directorate) spHatilitating and making more
visible links to all public sector projects in Epe

In the field of Open Source Software for public teednstitutions, some specific aspects of
“marketing” and distributing the software must lomsidered:

Enlarge the user’'s base. Main target is alwaysipwaministrations, but any use for any
users should be admitted (this transparent anddmsmmiminatory distribution does not
exclude private or commercial use, possibly outgi@eEuropean territory)

Respond to public sector policies and requireméatgrowing number of government
policies insist on the necessity to access theceorwde of government software)

Provide the source code in order to authorise atiaps to local requirements,
improvements that will benefit to the security,tbe quality of the application and to its
interoperability with other applications

Encourage the integration of pre-existing OSS saftwmodules (when licensed with
compatible licences)

Increase volunteers developers community, and fitver¢he potential resources to provide
advises, to ensure support and product evolutiarermial character at long term,
independently from support and financing;

Develop a service market (an “ecosystem”) around $oftware: encourage service
companies, having equal access to the code, t@peapore competitive related services.

11

“The largest and most well-known hosting sit&@irceForge. Two other sites providing the sansrmitar

services are savannah.gnu.org and BerliOS.de. Aofganizations, such as the Apache Software Foiomdahd
Tigris.org, give free hosting to open source prigjdiaat fit well with their missions and their comnity of existing
projects” (Fogel 2007). Websites of the servicestinaed by Fogel arbttp://sourceforge.net/index.php
http://savannah.gnu.ordittp://www.berlios.de/http://www.apache.organdhttp://www.tigris.org/

Page 11 of 24

X-DIS /0SS D5 — Version 0.3

3.3 Decide how you want to distribute your Open &miSoftware
(Licensing issues)

3.3.1 General licensing issues

If a copyright owner wants to distribute his/herriwdo others, he/she can sell the rights to it
outright (known as “Assignment of Copyright”) oragt-limited rights to the work (known as a
“Licence”). As with physical property, assigningetitopyright involves handing over complete
ownership of the work to a buyer or assignee. Asotpproach to exploit a copyright work is to
licence it. A licence is a permission given by tdopyright owner (known as the licensor) to another
person (known as the licensee). The copyright ovaigeees to allow the licensee to take actions
that would otherwise be prohibited by law, suctc@gying, adapting and/or distributing the work.
The licensee will agree to take these actions withe boundaries set by the licence — e.g. only
creating and distributing a certain number of cep@ paying a royalty on each copy distributed.
Although a licence can be created without stipotai contract, most licences are granted in a legal
form where both parties undertake certain obligeticn respect of each other and the licensed
copyright work; this is known as a “Licence Agreertie?

Open Source licensing is the core element for apgrOSource softwarg.Open Source licenses
intend to promote wide distribution of softwaredao encourage people who receive the software
to contribute to its functionality by modifying ts®urce codé? The main reason for a high number
of licence models, when the same fundamental freedare present in all licences, is related to the
modalities of re-distribution and to the contradtithe original author intends to keep of his ar he
work. In these fields, the diversity is nearly wath limit. Luckily, only a few licences are really
significant in terms of the number of projects psibd under them, or their potential: the choice
should be made from a group of 5 to 6. The mostomant distinction is between three main
families of licences: copyleft, permissive, anceimiediary licenses.

12 Licence Agreements are technical legal documevitish have many legal rules describing and confjni

their content and manner of expression. It is tleeeaworth noting that should there ever be a dsagent over
whether there has been a breach of the agreemehg final analysis the law will determine theamrhe. A poorly
drafted licence may then be found to mean sometiiitg different from what both the copyright owraerd the
licensee intended, when construed by a court.

13 According to the Open Source Definition of thee@Source Initiative (see
http://www.opensource.org/docs/dsdn Open Source licence must: a) grant the leetise right to distribute the
program him/herself, including the right to chargeney for it; b) grant access to the program's@uaode; c) grant
the right to modify the program; d) grant the rightistribute modified versions of the progran);akbow the use of
the program by all persons or groups in all fiedflendeavour; f) apply to everyone who receivesgiogram, without
the need for any additional agreement; g) apptheégorogram it licences whether the program isiokt as part of a
group of programs, or on its own; h) allow distion with any other software; i) allow distriboii in any form.

A list of Open Source Licenses is providedhté://www.opensource.org/licensédthough it may seem that
granting these rights could lead to a large nurolbstightly variant versions of a piece of softwarepractice
successful Open Source software tends to absgoardie modifications made by many contributors batka single
modified and improved version. It is a common miszEption that one cannot charge money for disinigudpen
Source software. This is not the case. In pracitiée rarely done, mainly because each “re-digtob’ could give the
software away in direct competition with the oriificensor. It is notable that the most widely-di§gpen Source
licence — the GNU General Public Licence (GPL) —p@®ses a major further condition upon those who caggpt or
distribute software under it: all software creabgdmodifying the original software must also bestised under the
GPL (if it is licensed at all). It is worth notirtgat there is no compulsion to release changestkanade: either under
the GPL or any other Open Source licence, the sutese developer may keep secret internal versibtieeamodified
software without necessarily licensing them to argyelse.

Page 12 of 24

X-DIS /0SS D5 — Version 0.3

Copyleft licenses

An Open Source licence is “copyleft” (also calleBhare alike”) when it imposes on each
subsequent “re-distributor” the obligation to distite the result as a whole as Open Source, and in
specific cases to reuse exactly the same licenoe.nfost well known example is the GNU GPL
(GNU General Public Licence V 2) supported by theeFSoftware Foundation (FSF). The EUPL
licence adopted by the European Commission is“atyoyleft” because it imposes to reuse specific
open source licences, while leaving much more fseetb developers than the GPL (see hereafter
the “compatibility” section). Other examples are thpen software licence (OSL v 2.1 or v 3.0) the
Eclipse licence V 1.0, the Creative Common licende0 or the CeCill licence V 2.

Permissive licenses

Differently from copyleft licences, permissive li®es (also called “free for all”) impose few
constraints in the case of re-distribution. In jgatar, there is no “copyleft” obligation, meaning
that a proprietary software developer can inclugedistributed OSS components in his products.
A typical permissive licence is the BSD licencehest examples are X-11 and other X-type
licences® as Xfree86, the Apache software licetcehe Cryptix General Licent® The W3C
Software Notice and Licente The Python Copyright Licent® the Zope Public Licenéé the
LDAP public licencé® and the Phorum LicentHust to mention a few.

Intermediary licenses

There is an intermediary type, also called ‘keendp where modifications to the software
distributed under such licences have to be madaabie under the same licence as well, while
larger works incorporating the software are notjetthto the same conditions (meaning that they
can also be distributed under permissive licenoesyen as proprietary software). The LGPL (for
GNU Lesser General Public Licence) used for Linystesm libraries is one of the§&The Mozilla
Public Licence (MPL) provides the same compromisevben Open Source development and
business.

Unfortunately it is not the case that all the seucode that is available under an Open Source
licence can be adapted and combined without réstmién order to produce new Open Source

15 Under some of these licences, the original aufbalied “Initial developer) has the possibilitydontrol the

source code evolution. Sometimes also, the “obtigab reuse the same licence” is limited to tloigrse code that
“must be published / available” to the community am the initial developer after each contributonzdification.
Nevertheless, the binary executable version cae-aistributed separately under another licenodyding proprietary
ones), and this limits duplication by “non-contribrs”. Because these two copyleft licences arecaptpatible with
each other, OSL and GPL components cannot be aterThe initial choice of a non-GPL copyleft hice, even if it
seems interesting at first sight, is not genenabommended if the project owner wants to benedinfthe
contributions of the large GPL community.

16 http://www.x.org/xdownload.htm

http://www.apache.org/licence-1-1

http://www.cryptix.org/docs/licence.html
http://www.w3.org/consortium/legal/copyright-softeal 9980720
http://www.python.org/doc/copyright.html

http://www.zope.org/resources/zpl

http://www.openldap.org/software/release/licenaalht

http://www.phorum.org/licence.txt

2 The LGPL is identical to the GNU GPL in many walyst distinguishes two different kinds of situasomhen
one uses a library. A “work based on the library¢ans either the library itself or any derivativerkvander copyright
law, while a “work that uses the library” meansragram that contains no derivative of any portibthe Library but
is designed to work with the library by being colegior linked with it. This includes also propristaoftware that
could run inside the Open Source environment. Taezahe use of such licences is quite specific.

17
18
19
20
21
22
23

Page 13 of 24

X-DIS /0SS D5 — Version 0.3

software. Two licences, which each meet the reqmerds of the Open Source Definition
individually, may nevertheless contain terms thakenthem incompatible with each other. The
GNU GPL provides an example of this: it mandated tode, which incorporates GPL-licensed
code, must itself be licensed under the GPL as alevHt also mandates that no additional
restrictions on the rights it grants can be imposadGPL-licensed code. These two conditions
combine to mean that GPL-licensed code can oniné&ged easily with other GPL-licensed code,
or with code whose licence imposes only conditipnesent in the GPL. The Free Software
Foundation, who administers the GPL, makes availablist of licences that they consider to be
compatible with it. Often the simplest way of rasog licence conflicts is to ask the code’s
author(s) if they would be willing to re-licenceeth code for inclusion. However this approach is
only really practical where the number of authsreeiatively small. Here also, the EUPL innovates
by accepting that EUPL-licensed code could be niewgigh code from any “compatible licence”
and publishes therefore a non-revocable list ofggatible licences.

3.3.2 Dual licensing

It is worth noting that the full copyright holdelways has the freedom to licence his work under
several different licences, depending on the godlthe use (e.g. proprietary or not). This is chlle

“dual licensing”. This provides an option when proical licenses, such as the GPL or EUPL1,
have been chosen to distribute software that iseoviny a public institution and if it is a policyao

to allow third party developers to appropriate datives of the original product owned by the

public body. Dual licensing involves releasing stodtware to the general public, including all other
users and developers, under a reciprocal licencthéobenefits of such a licence. In addition, the
software is available for licensing to developetsowvant to create proprietary derivatives, under
separate, non-open-source (or “private”), licenstegns. These could be commercial terms
involving royalty payments, or allowing the pubbody to buy derived works at a discount. They
could also simply require that the developer nothg public body before making proprietary

derived works. Indeed, dual licensing is a stratadgpted by firms, which release software they
fully own, the most successful example being MyS@hich releases software under the GPL to
the public, and under proprietary licences to oftiars that want to make proprietary changes to its
popular database engine).

3.3.3 Practical issues

The choice of a distribution licence should be dwery early as it is a central piece to define the
rights of contributing developers and as it isidifft to change the initial choice afterwards. tn s
far the licensor want to avoid any exclusive “agpration” of its software by a clever third party
(and we assume that this position is in generabtieeof the public administrations). Fogel (2007)
recommends that “when choosing a license to appyptr project, if at all possible use an existing
license instead of making up a new one. Therevavgg¢asons why existing licenses are better:
e "Default License":For Eurostat, the license to c®is the EUPT.
e Exceptions: If in special cases — mostly becauselafises on derivative work — in
underlying software the EUPL is not feasible, arot®SS licensing scheme accepted by
OSF® can be chosen. In this case, the agreement oftbir&eneral of Eurostat is required.
e Familiarity. If you use one of the three or fourshpopular licenses, people won't feel they
have to read the legalese in order to use your, dmtause they'll have already done so for
that license a long time ago.

European Union Public License, version 1.1;sé@//www.osor.eu/eupl
WWW.0PENSOoUrce.org

Page 14 of 24

X-DIS /0SS D5 — Version 0.3

e Quality. Unless you have a team of lawyers at ytigposal, you are unlikely to come up
with a legally solid license.

(...)
Once you've chosen a license, you should stata the project's front page. You don't need to
include the actual text of the license there; gige the name of the license, and make it linki® t
full license text on another page. This tells thibl what license you intend the software to be
released under, but it's not sufficient for legadgoses. For that, the software itself must corttagn
license. The standard way to do this is to putfthielicense text in a file called COPYING (or
LICENSE), and then put a short notice at the togaxth source file, naming the copyright date,
holder, and license, and saying where to find tiietéxt of the license®

A very important issue that should be considere@grwh license for distributing the software is
chosen is security. In this regard, Open Sourcgildigion as visible code is a two-edged sword.
The good side is that it will multiply “reviser'syes” and facilitate the discovery and rapid
correction of bugs, including security failures.eThad side is that publication of un-secure
software could facilitate illicit use or intrusi@m your system prior to applying corrections.

Therefore the public authority should take its ritsttion decision after due consideration of the
software functionalities: if misuse could facilgadentity theft, cyber terrorism or other forms of
IT-enabled crime, Public Sector should considerl¢vel of security as a main evaluation criteria
and audit the work prior to distribution to avoidat the wrong people could gain access to
confidential or/and sensitive information (includimny kind of privacy protected and personal
data).

The case of un-personal statistical software amdvétry complex calculations included is very
different: open source code distribution will gitlee entire specialised user community the
possibility of dynamically contributing to closingnd concealing errors and security gaps.
Disclosing the code will proactively enhance thévgare’s quality and security level, representing
all benefits for the reliability of the resultingformation.

3.3.4 Tracking intellectual property

The issues of licence compatibility and of comptaultiple ownership of intellectual property
mean that it is desirable, if not essential, foogpammers and their managers to keep detailed
records. Version Control Systems provide some f tacord keeping automatically, recording
who made changes to the code and what they didcohaplement this information, managers
should keep records of the contractual and licgnsiatus of contributors in order to establish who
owns their work. They should also require and séxicit agreements from copyright owners that
their contributions may be licensed and distributeder the licence selected for the project as a
whole. Where code is brought in from existing Of@®urce software, the details of the relevant
licence must be recorded (having first establisthed this licence is compatible with the project’s
overall licensing policy).

2 Karl Fogel (2007): Producing Open Source Softwadiew to Run a Successful Free Software Project.

Available online athttp://producingoss.com/en/index.Htogel points out that there are many variatiofidis
pattern.

Page 15 of 24

X-DIS /0SS D5 — Version 0.3

4 Technical infrastructure

OSS communities typically use a number of collabonatechnologies in order to coordinate work
and validate the produced code and documentatimhtfee like). Such technologies should also be
provided in statistical OSS projects, though thet that many of the developer communities in this
field remain very little may reduce the need of sooh these technologies (such as IRC or sprints)
as compared to other OSS projects. These techeslogilude’®

IRC (Internet Relay Chat), for group communication chat rooms and also one-to-one
communication for private talks. There is a chammoavailable in CIRCA, which is called “virtual
meeting”.

e Mailing lists, for discussions of people who ar¢éerested in the same topic; closed lists
where the administrator has to add the recipierasually can be distinguished from public
lists where people can subscribe on their own Inglisg an email to a specific address. An
online mailing list archive with search functiortglallows to group the conversations into
the discussion threads.

e Wiki, a website where everyone can view, add andifydts contents.

e Blog, a web application that manages the frequestipg of news messages, which is used
as the personal diary of an author categorizingehisies into different topics. There are
also project-specific Blogs where various writees @ost articles or a project hosts a so
called Planet where all the messages of the camtni®’ Blogs are aggregated bearing the
OSP’s category. Most Blogs offer the possibilityaidd public comments so they act as an
interactive medium between the authors and theersadVith protocols like RSS (Really
Simple Syndication) the news can be monitored &S clients and they can also be
referenced among the different Blog websites.

e Sprints, i.e. meetings of OSS developers for twahoee days with the goal to intensify
further development of the software in an XP (BxteeProgramming) styled manner which
includes pair programming among other things.

e Revision control systems in order to record allmges of the source code. They allow
multiple developers to work on one software projsichultaneously and ensure no file
revisions get lost. Various systems are in useyloth the most commonly known are CVS
(Concurrent Versions System) and Subversion (SVN).

e API (Application Programming Interface) refers twetoverall structure and design of a
software. An API provides a set of routines, protscand tools for constructing software
applications. In object oriented environments thd Specifies how the behaviour and state
of classes and objects is accessed. It defines mgh#ihes are available, how to call them,
and what they do, but it does not explain how thier@utines are implemented and what
algorithms are applied. The API tells thus devetsgew to access e.g. core functionality
of a software framework in order to write their ogoplication.

The European Statistical System (ESS) providesnabeu of additional requirements to be met by
statistical OSS development projects in order tmmy with European harmonisation goals. The
most fundamental requirements in this respect aviegbly
e to use common standards for data processing lfeesame algorithms for the same tasks in
different statistical institutions or applications)
e to use standardised statistical methodologies

3 This part has been taken from the XDIS-OSS Giridslon Developing Statistical Software as Opernr&qu

Page 16 of 24

X-DIS /0SS D5 — Version 0.3

to use a standardised architecture

to use a common grammar in order to express valatles

to use standardised interfaces

to use XML for data exchange between different igppbns (and SDMX for the exchange

of aggregated statistical data)

e to use open standards in order to secure interofigrabetween different technical
platforms

e to localise software in order to make it usablasrmany languages of EU Member States as

possible

5 Releasing

5.1 Recommendations

In contrast to proprietary software projects, om®urce software projects lack of centralized
control over the development team, which has angtimpact on release managment. As Fogel
(2007) points out, volunteer groups are not so riibmo but their members work on the project for
all sorts of reasons. As a consequence, not dtlesh are interested in helping with a given release
Fogel (2007) describes how the community deals thighchallenges deriving from the multitude of
interests and the fact that software developmeatasntinuous process (in which it can be hard to
determine when a new release should be issuedg ffiddel that makes this possible generalizes to
more than just releases. It's the principle of Ipgiang tasks that are not mutually
interdependent—a principle that is by no meansuaig open source development, of course, but
one which open source projects implement in thein particular way. (...) They gravitate toward
processes that have flat, constant levels of adtnative overhead, rather than peaks and valleys.
Volunteers are generally willing to work with smallit consistent amounts of inconvenience; the
predictability allows them to come and go withoutreying about whether their schedule will clash
with what's happening in the project. But if th@jpct were subject to a master schedule in which
some activities excluded other activities, the Itesould be a lot of developers sitting idle a &t

the time—which would be not only inefficient butrbbay, and therefore dangerous, in that a bored
developer is likely to soon be an ex-developer.”

Open Source Software is distributed in packages asdhlly, in different releases over time. In
order to organise this process in an effective raarand to keep others' interest in using /
advancing your software, you should comply withdaing recommendations:
e Release Numbering
o Fogel (2007) describes the typical features otease as follows:
» old bugs have been fixed
= new bugs have been added
= new features may have been added
= new configuration options may have been added
= incompatible changes may have been introduced
0 Release numbering serves two purposes, it shouanhbiguously communicate the
ordering of releases and it should indicate theree@nd nature of the changes in the
release. In order to make sure to achieve thesks,gbashould be kept to following
recommendations:
= Release numbers are groups of digits separatedotsy duch as OpenOffice.org
2.4.0, whereby the dots are (usually) not decinoaltp but separators

Page 17 of 24

X-DIS /0SS D5 — Version 0.3

= Additional components of the release number arergdse labels such as "Alpha”
or "Beta", which means that this release precedesuse release that will have the
same number without the qualifier

= Other qualifiers in semi-regular use include "Stdpl'Unstable”, "Development”,
and "RC" (for "Release Candidate"). The most widedged ones are still "Alpha”,
"Beta", and "RC", and in order to ease understaitijabf the release number it is
recommended to keep to digits and theses thredi@utilabels.

= Given this “signalling system”, release numberoinf the user exactly about the
degree of changes and the status of the distribsbéigvare: an increment of the
major number indicates that major changes happemedncrement of the minor
number indicates minor changes; and an incrememheimicro number indicates
really trivial changes (Fogel 2007).

» There are different conventions for versioning amtease numbering, as, for
instance, used by the APR projebttp://apr.apache.org/versioning.hjmbut the
differences between these conventions are quitginedr

e Release Branches

o Due to the fact that development is a continuowsk tid might appear difficult to
determine when a formal new release should bedssue

o It is not recommendable to take a snapshot ofréw @t a moment in time, package it
up, and hand it to the world as a new release Isecamay be hard to decide whether or
not the entire development tree is clean and rdadyelease: newly-started features
could be lying around in various states of completior someone might have checked
in a major change to fix a bug, but the changedtbel controversial and under debate at
the moment the snapshot is taken (Fogel 2008).

o In order to overcome these problems one shouldyaslwse a release brantch.

o0 How exactly to create a release branch dependsi@wdrsion control system that is
used in a project.

o0 The decision on which changes will be in the redeasd which will not, and shaping the
branch content accordingly, is not an easy tasle @uoblem is that a new release often
creates a “last-minute feature rush (...): as ssodevelopers see that a release is about
to happen, they scramble to finish their curreranges, in order not to miss the boat.
This, of course, is the exact opposite of what want at release time (...). The more
changes one tries to cram into a release at thenasute, the more the code is
destabilized, and (usually) the more new bugs eeated” (Fogel 2007).

0 According to Fogel (2007), most software enginegnee on a set of rough criteria for
what changes should be allowed into a releasellim@g its stabilization period:
= fixes for severe bugs, especially for bugs with@atkarounds
= documentation updates
= fixes to error messages (except when they are deresl part of the interface and

2 Fogel (2008) defines a release branch as folléivsppy of the project, under version control sdlated, so

that changes made to the branch don't affect 8teofehe project, and vice versa, except when gasuare deliberately
"merged" from one side to the other (see belowdnBhes are also known as "lines of developmeng&nkwvhen a
project has no explicit branches, developmeniliscsinsidered to be happening on the "main branalsb known as
the "main line" or "trunk".

Branches offer a way to isolate different lineslefelopment from each other. For example, a braanthe
used for experimental development that would bed@stabilizing for the main trunk. Or converselygranch can be
used as a place to stabilize a new release. Dthingelease process, regular development wouldneentininterrupted
in the main branch of the repository; meanwhiletfmrelease branch, no changes are allowed ettuegs approved
by the release managers. This way, making a relesesdn't interfere with ongoing development work.”

Page 18 of 24

X-DIS /0SS D5 — Version 0.3

must remain stable)
= certain kinds of low-risk or non-core changes tamgaduring stabilization, and may
have formal guidelines for measuring risk
e Decision-making

0 A usual way to ease decision-making is to agreeranperson to be the release owner
(e.g. as a “benevolent dictator”); this does howemet abandon discussions and
arguments. The release owner should have the tathtompetence to understand all
the changes, and the social standing and people tgkhavigate the discussions leading
up to the release without causing too many hufirfige

o Alternatively, the project team can opt for a vgtimechanism, i.e. vote on which
changes to include in the release. The problem isetteat the most important function
of release stabilization is to exclude changesegtbee it's important to design the voting
system in such a way that getting a change intadlease involves positive action by
multiple developers. Including a change should n@ede than just a simple majority
(Fogel 2007).

e Eurostat release policy

0 The OSS paradigm states “Release early, releasa!bffhis means, that the project
officer should not wait for a very final bug-freergion, but should publish beta versions
as soon as they are available. The advantage ishidnece to get early feedback from
volunteer beta testers.

o0 When publishing beta versions, please mark them@rlgl@as such, and do not forget to
mention known bugs and issues in the release notesot publish beta versions, which
are in such a bad state that a publication coutd the credibility of the project.

5.2 Source Code

The source code must be freely accessible (thramghttp/ftp link) without any user restrictions.
This can be in achieved by a public CIRCA groupaa@o-called “forge”; the best known forge is
SourceForge€, the recommended forge for the European Statisigstem is OSOR.

When OSOR is chosen for the distribution, pleaskensarre to activate the option, that all users
have to accept the EUPL license before downloattiagoftware.

If the application consists of several componesdish component must be in the respective folder
and which carries the name of the component

Internally each subfolder could be structured difeerent way: by source type (code, images, text)
or by function (core, plug-ins)

It is preferable that, at the top level of the seutode, there is a script that automatically céespi
the source code (when possible, it is conveniens®a multiplatform script language, like Ant).
The source code should contain a copyright clasgellws:

© 2009 by the European Community, represented by Eu rostat.
All rights reserved.

30
31

http://www.sourceforge.net
http://www.osor.eu

Page 19 of 24

X-DIS /0SS D5 — Version 0.3

The year “2009” shall be replaced with the relewadr of creation. Authors (programmers) may
be mentioned, companies having worked on the sotwde may only be mentioned in brackets
after author’'s names. All intellectual propertyhtig of the code produced by contractors is with the
European Community; there must not be any texhénsource code diverging from this. Modules
should not be given names referring to companies.

5.3 Documentation

Once the source code is released it is converoeg®plain how to compile it in binary code and
clarify whether additional software is needed.

Release the documentation of the source code: #inerepen source tools that automatically
generate dependency diagrams starting from thesa@ade (Doxygen, Javadoc, etc.)

Since the application can be modified the docuntemtanust be released in an editable fornbsg (
html, doc®, odf/odt).

The documentation can be in a separate foldergather with the source code. In the latter case, it
iIs common practice to name the folder as “doc”.

5.4 Packaging

Open Source Software is distributed as source amdmrdless of whether the software runs in
source form (i.e., can be interpreted, like PeythBn, PHP, etc.) or needs to be compiled fir&e(li
C, C++, Java, etc.). Compiled software will usuéiyinstalled from pre-built binary packages.

Despite of some projects deviating from this, thera fairly strict standard for how source relsase
should look:
* Format
o0 The source code should be shipped in the standandafs for transporting directory
trees. For Unix and Unix-like operating systems, ¢bnvention is to use TAR forni&t,
compressed by compress, gzip, bzip or bzip2. Forwigdows, the standard method
for distributing directory trees is zip format, whihappens to do compression as well,
so there is no need to compress the archive akating it (Fogel 2007).
e Name and Layout
o the name of the package should consist of the aodftes name plus the release number,
plus the format suffixes appropriate for the arefiype.
o the source code should be arranged in a layouy reeiccompilation (if compilation is
needed) and installation
o there should be a plain text README file explainmbat the software does and what
release this is in the top level of new directorget where also pointers to other
resources, such as the project's web site, otlesr df interest should be provided, such
as

32 While Microsoft'sdoc format is proprietary, it is sufficiently well spprted by non-proprietary applications.

The Open Office XML formatdocx) however should at the moment still be avoidedt msnot sufficiently supported
by OSS applications.

8 “TAR stands for "Tape ARchive", because tar fornegresents a directory tree as a linear datarstrevhich
makes it ideal for saving directory trees to taffee same property also makes it the standard $briloliting directory

trees as a single file. Producing compressedl& (or tarballs) is pretty easy. On some systéinestar command can
produce a compressed archive itself; on othersparate compression program is used” (Fogel 2007).

Page 20 of 24

X-DIS /0SS D5 — Version 0.3

= INSTALL file and README file, both giving instruatins on how to build and
install the software for all the operating systenssipports
= COPYING or LICENSE file, giving the software's tesrof distribution
= CHANGES file (sometimes called NEWS), explainingati new in this release
e Specifications for handling statistical Open Sousoftware at Eurostat:

o When distributing the software at the end theré bél one folder containing source
code, programmer’s documentation, user guide, datign and installation guide,
etc.

o If the application is intended to run on PCs, thel®uld be a second folder
containing the compiled binaries, user guide (wig®re is an online-help), and
installation instructions.

o |If applicable, further folders may be added.

o0 Each folder shall contain a copy of the text of Bi¢PL plus a fildicence.txt with
the following content (replace XXXX by the nametloé application and 2009 by
the applicable year):

XXXX is © 2009 by the European Community, represent ed by
Eurostat. All rights reserved.

XXXX is published under the European Union Public L icense
(EUPL) version 1.1. If you do not accept this licen se,
you are not allowed to make any use of XXXX or any parts
thereof.

o Where applicable, it is useful to add an MD5 fie dheck the integrity of the
software once it is downloaded.
o0 The folders may be compressed for easier downldad; common practice to
compress them itar.gz or in zip format.
o Itis common practice to name these files withriaene of the application followed
by the version number (e.g. 1.3, 2.0).
o If the application is distributed together with rthiparty components to ease the
installation be the users, please check:
= that the licensing conditions of the third partymgmnents do not prohibit
this packaging;
= that areadme.txt file must be included declaring all licenses thiedent
components;
= that the text of all licenses is included in thekzage

5.5 Installer

For applications running on a PC, it is possibleite an open source installer, which can include
the EUPL license during the installation. The renmnded installer is Inno Setup. In this case, the
preferred distribution for is a single exe file. kéasure that the installation procedure is flexible
enough to allow the user to specify an alternatiestination drive and directory.

If the software does not necessarily require tis¢aitation to run properly, it is recommended that

both the self-installing exe file and the zip fdentaining the binaries without the installatioe ar
offered for download.

Page 21 of 24

X-DIS /0SS D5 — Version 0.3

6 Good practices for using the OSOR forge

The OSOR forg¥ is the recommended place to distribute applicatiothe OSOR forge is
organized by project. A project may be a single liappon or a group of closely related
applications.

In OSOR, everybody may read or download, but wgitind uploading is reserved to registered and
authorized persons. So, before creating a prae@3OR, you have first to register. Then you can
create a project. Projects should be created bgdtair officials rather than by contractors. After
creation of the project, write authorization cangbeen to the contractor’s personnel.

When registering a project in OSOR, do not indiGatweebsite or a CDE page, if you want your
project to be hosted by OSOR. Choose SVN for sococke versioning. Do not forget to indicate
the topic “Statistics”.

The project officer decides the extent to which@®OR forge is used. As a minimum, it has to be
used for the distribution of the files. A typicalease of an application could look like follows:

Filename Content
AppName- Source code; documentation in editable
v2.3.tar.gz format; scripts for compilation, installation;

etc.;license.txt, EUPL.pdf

AppName- Binaries and all other files needed to run the

v2.3.zip application;license.txt, EUPL.pdf

Setup-AppName- Single file for the installation on a Windows

v2.3.exe PC, a message to accept the EUPL is
displayed at the start of the installation
procedure

Release notes shall be included with each reldteetlae first, using the OSOR release note
feature.

Further tools on OSOR which may be used are thewolig:

e Forums: This is a discussion forum feature comgarabthe CIRCA newsgroups, but more
user friendly. It is advisable to use the featageit is easy to maintain.

e Tracker: This feature can be used for tracking bsgpport requests, patches and feature
requests. It is recommended to make use of thisigaunless another incident tracking
system has been agreed with the contractor.

e Lists: When a project is created, a mailing listisated automatically. Registered OSOR
users may subscribe to this mailing list. This deatis intended to be used in collaborative
projects between many partners (like ESSnets)rwike it may be ignored.

34 http://forge.osor.eu/

Page 22 of 24

X-DIS /0SS D5 — Version 0.3

e Tasks: This is a To-do-list feature, it should obly used in a collaborative project with
several partners and a project co-ordinator corechith maintain the lists.

e Docs: This is the place for general documentatiorthe@ application, including background
documents. Please note that user and program dotatioa should stay with the code.

e Surveys: In a large and diverse community, survegg be a way to find a good agreement
for future roadmaps etc. For Eurostat, this featmeuld be used with care: in many cases
IPM could be the better solution.

e News: A service for announcements. Please annonegereleases and other important
news here.

e SCM: This is the file storage for the source filthen the contractor does not have his own
version management system for the source codeshbisid be used. In any case, the source
code must be uploaded here at the end of a cons@that a new contractor will be able to
take over responsibility.

e Files: This is the download section to be usedHerdistribution of the files. The usage of
this part of the OSOR forge is mandatory for adjects having already released a version.
A typical release of an application could look lfiedows:

Filename Content
AppName- Source code; documentation in editable
v2.3.tar.gz format; scripts for compilation, installation,

etc.;license.txt, EUPL.pdf

AppName- Binaries and all other files needed to run the

v2.3.zip application;license.txt, EUPL.pdf

Setup-AppName- Single file for the installation on a Windows

v2.3.exe PC, a message to accept the EUPL is
displayed at the start of the installation
procedure

Release notes shall be included with each reldtesetlae first, using the release note function at
upload time.

e Wiki: The Eurostat project officer has to decidethie project needs its own Wiki, or if the
“OSS and Statistics” Wiki in the OSOR communitiext®or™ or the planned Wiki on
Eurostat’s homepage are the better choice.

7 Making use of the OSOR community “OSS and Statigts”

The project officers are invited to join the OSOPRMmunity “OSS and Statistics”
(http://www.osor.eu/communities/oss-and-stati3tiddhey should keep the wiki updated on their
project, and should inform the facilitators of t@mmunity on new releases, so that the community
pages are updated, and publicity can be made @imtws” feature.

3% http://www.osor.eu/communities/oss-and-statistids/w

Page 23 of 24

X-DIS /0SS D5 — Version 0.3

8 Helpful software

Apache Anthttp://ant.apache.orgscripting language for compilation)
Doxygen:http://www.stack.nl/~dimitri/doxygenfdocumentation tool)
Javadochttp://java.sun.com/j2se/javadqdocumentation tool)
Kompozer:http://kompozer.netHTML editor)

Inno Setuphttp://www.innosetup.continstaller tool)
HashCheckhttp://www.ktechcomputing.com/hashche@éash code tool)
7Zip: http://www.7-zip.org/packer)

Page 24 of 24

