

EUROPEAN COMMISSION

DIRECTORATE-GENERAL FOR INFORMATICS

ISA² IPS REST API Profile
Version 1.0

Publication date: 8 September 2022

ISA² IPS REST API Profile – Version 1.0

Table of Contents – 2

Document Author(s)

Author Name Role

Jerry Dimitriou Solution Architect & Technical Expert

Document Reviewer(s)

Reviewer Name Role

Vlad Veduta eDelivery Business Analyst

Bogdan Dumitriu eDelivery Project Officer

Document Approver(s)

Reviewer Name Role

Bogdan Dumitriu eDelivery Project Officer

This document was created as a deliverable in the 2020 ISA2 Innovative Public Services

(IPS) action.

ISA² IPS REST API Profile – Version 1.0

Table of Contents – 3

TABLE OF CONTENTS

1 Introduction .. 5

2 Scope and Goals ... 6

3 Notation .. 7

4 Document Structure ... 8
4.1 Profile Sections ..8
4.1.1 Level 1: API Core Profile .. 8
4.1.2 Level 2: API Documentation ... 9
4.1.3 Messaging API ... 9
4.2 Profile Enhancements ..9
4.2.1 High-Security Enhancement .. 9
4.2.2 Discoverability Enhancement ... 9

5 API Core Profile ... 10
5.1 Authentication and Authorization ... 10
5.1.1 Architecture Topologies .. 11
5.1.2 OAuth 2.0 Authorization Framework Profile.. 14
5.1.3 Authentication Framework Profile .. 15
5.2 Security .. 16
5.2.1 Transport Level Security .. 16
5.2.2 Message And Payload Level Security .. 17
5.3 Lifecycle Management .. 21
5.3.1 API Versioning Semantics .. 21
5.3.2 API Lifecycle .. 22
5.3.3 API Deployment Considerations ... 24
5.4 Common Semantics .. 24
5.4.1 REST API Design ... 24
5.4.2 Common Payload Representations .. 29
5.4.3 Single and Multipart Resource Representations ... 30
5.4.4 Common Semantics on Methods ... 32
5.4.5 Common Semantics on Status Codes .. 34
5.4.6 Error Messages .. 35
5.5 Documentation ... 36
5.6 Discoverability ... 37

6 API Documentation .. 38
6.1 Introduction... 38
6.2 Documentation Rules .. 38
6.2.1 General .. 38
6.2.2 Info .. 38
6.2.3 Servers ... 39
6.2.4 Paths ... 39
6.2.5 Security.. 40
6.3 The OpenAPI Document of the ISA² IPS REST API Core Profile ... 40
6.3.1 Pre-defined components... 41
6.3.2 OpenAPI Document Instance .. 42

7 Messaging API Specification ... 46
7.1 Introduction... 46
7.2 Message Exchange Patterns ... 46
7.2.1 Send Message with No Response − Push .. 46
7.2.2 Send Message with No Response − Pull .. 47

ISA² IPS REST API Profile – Version 1.0

Table of Contents – 4

7.2.3 Send Message with Synchronous Response .. 48
7.2.4 Send Message with Asynchronous Response − Push and Pull ... 50
7.2.5 Send Message with Asynchronous Response – Push and Webhook Pull .. 51
7.2.6 Send Message with Asynchronous Response – Push and Webhook Push .. 53
7.2.7 Send Message with Asynchronous Response – Pull and Push ... 55
7.3 Recipient Addressing Schemes ... 57
7.3.1 Single Known Recipient .. 57
7.3.2 Multiple Known Recipients ... 58
7.3.3 Unknown Recipients ... 58
7.4 Message Specification ... 58
7.4.1 Common Message Fields ... 58
7.4.2 User Message .. 64
7.4.3 Signal Message ... 66
7.4.4 Message Reference .. 71
7.5 API Endpoints ... 72
7.5.1 Message Submission Endpoints .. 75
7.5.2 Response Message Submission Endpoints... 81
7.5.3 Message Pull endpoints ... 89
7.5.4 Response Message Pull endpoints ... 95

8 High-Security Enhancement .. 104
8.1 Introduction.. 104
8.2 OpenID Connect Flows ... 104
8.3 Security ... 104
8.3.1 Transport Level Security ... 104
8.3.2 Message Level Security & Payload Security ... 104

9 Discoverability Enhancement ... 105
9.1 Introduction.. 105
9.2 Discoverability Enhancement ... 105

References ... 106

Changelog .. 109
11.1 Version 1.0.. 109
11.2 Version 0.3 - Release Candidate ... 110
11.3 Version 0.2 - Partial Draft .. 110

ISA² IPS REST API Profile – Version 1.0

5

1 INTRODUCTION

The eDelivery building block is constantly evaluated by organisations across the EU as an

option for projects that require secure and reliable communication.

An observation from the feedback collected is that, while the eDelivery AS4 profile is a good

fit for many of the above-mentioned projects, several others, with a growing diversity of

requirements, would welcome the extension of the eDelivery building block with a profile

to cater for the REST API architectural style. What is common to these potential projects is

that at least one party to the data exchange would operate in a light context, loosely defined

as a set of constraints and circumstances applying to organisations or individuals looking

to consume a business service with a relatively small technical footprint. Such constraints

could be linked to non-availability of any combination of human, financial, knowledge,

technical or power resources, whether at design, installation or run-time.

A profile for a harmonised use of the REST API architectural style is thus proposed here to

respond to this need, as part of the 2020 ISA2 Innovative Public Services (IPS) action. If

successful, the profile could, as a next step, be added to the eDelivery building block.

https://ec.europa.eu/digital-building-blocks/wikis/display/DIGITAL/eDelivery
https://ec.europa.eu/digital-building-blocks/wikis/display/DIGITAL/Access+Point+specifications
https://ec.europa.eu/digital-building-blocks/wikis/display/DIGITAL/eDelivery
https://ec.europa.eu/isa2/sites/isa/files/wp_2020_detailed_description_of_actions_part_1.pdf
https://ec.europa.eu/digital-building-blocks/wikis/display/DIGITAL/eDelivery

ISA² IPS REST API Profile – Version 1.0

6

2 SCOPE AND GOALS

The aim of this specification is to create a profile of several HTTP and REST specifications

catering for the “light context”. The profile is built on top of the HTTP/REST architectural

pattern and will adopt technology to support this pattern based on existing standards,

including standardised specifications, IETF Draft RFCs, RFCs etc. Its scope is to provide:

• Standardised data exchange

• Business-agnostic data exchange

• Secure data exchange

Focusing on the light context, the profile would enable the implementation of eDelivery-

compliant data exchange benefiting from:

• Ease of deployment/installation

• Economy of resources on the client side

• Operation on mobile/personal environments

• Updated options for the data exchange patterns

The specification profiles also aspects of an HTTP / REST API ecosystem that are not part of

the implementation itself, such as:

• Delegated Authentication Patterns

• Delegated Authorization Patterns

• Lifecycle management

• API Discoverability

ISA² IPS REST API Profile – Version 1.0

7

3 NOTATION

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",

"SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in

this document are to be interpreted as described in [BCP14] ([RFC2119] and [RFC8174])

when, and only when, they appear in all capitals, as shown here.

ISA² IPS REST API Profile – Version 1.0

8

4 DOCUMENT STRUCTURE

The document consists of three main sections and two profile enhancements. The main

sections of the profile are the API Core Profile, the API Documentation and Messaging API

Specification. The two profile enhancements are the High-Security Enhancement and the

Discoverability Enhancement.

Figure 1 Profile Structure

4.1 PROFILE SECTIONS
The ISA² IPS REST API profile consists of three hierarchical sections, each subsequent

section depending on the preceding one. The API Core Profile (Level 1) is considered the

baseline and mandatory part of the REST API Profile from a conformance perspective.

The API Documentation goes one step further and defines how an OpenAPI Document
should be structured for an API in order to be conformant (Level 2). An API conformant to

Level 2 is an API that inherently conforms to Level 1 and also provides an OpenAPI

Document according to the specification of Level 2. The final section provides a REST

Messaging API Specification, itself conformant to Levels 1 and 2 of the profile, to be reused

as a messaging specification in a light context, architecturally comparable to, but feature-

different from the eDelivery AS4 profile [EDELIVERY-AS4-PROFILE].

4.1.1 Level 1: API Core Profile

The API Core Profile provides the baseline of the HTTP technologies that are profiled as part

of the ISA² IPS REST API profile, covering the following major aspects of a REST API:

• Authentication

• Authorization

• Transport, message and payload level security

• Lifecycle management

ISA² IPS REST API Profile – Version 1.0

9

• Common semantics on REST API design, resource representations, HTTP methods

and error representations

• Documentation and discoverability

In the API Core Profile, several RFCs and Internet-Drafts from the IETF together with

standards provided from organisations like W3C, ISA and ETSI are being selected and

profiled to meet the requirements.

4.1.2 Level 2: API Documentation

Level 2 of the profile provides an extra layer of conformance, applicable for the

documentation of the API. It profiles the OpenAPI Specification v3 and provides both

predefined components that can be reused and extensions to the OpenAPI Specification for

aspects not currently supported such as the lifecycle definition of an API.

4.1.3 Messaging API

The Messaging API Specification is an API specification that is based on both the API Core

Profile and the API Documentation specifications and that makes use of the High-Security

Enhancement of the profile. Its aim is to provide a common REST API Specification for

messaging aligned with the scope and goals stated in the above section.

4.2 PROFILE ENHANCEMENTS
Requirements expected to be common in many, but not all environments, are captured

separately as Profile Enhancements. This avoids the need for all conformant

implementations to be aligned to a highest common denominator, while still providing a

standardised approach where necessary by allowing projects or organisations to mandate

the use of the core profile sections in combination with a specific selection of enhancements.

The Profile Enhancements MUST be used in conjunction with the REST API Profile. The two

currently defined Profile Enhancements are mutually compatible, so they MAY be used in

combination.

4.2.1 High-Security Enhancement

The API Core Profile defines guidelines on how Message-Level Security and Payload
Security MUST be implemented, if needed. The High-Security Enhancement makes their

implementation mandatory, further restricting the algorithms that can be used.

4.2.2 Discoverability Enhancement

The API Core Profile defines a minimal set of guidelines on how APIs should support

discoverability. The Discoverability Enhancement extends this set to mandate further
discoverability guidelines. Thus, an API conforming to the Discoverability Enhancement

MUST implement both the guidelines defined in the Discoverability section of the API Core

Profile, by providing all the OpenAPI attributes prescribed therein, and the additional ones

defined in the Discoverability Enhancement.

ISA² IPS REST API Profile – Version 1.0

10

5 API CORE PROFILE

This section defines the core parts of the profile.

5.1 AUTHENTICATION AND AUTHORIZATION
Authentication and Authorization are key requirements that need to be properly profiled

by the ISA² IPS REST API profile. The profile selects and endorses the proper standards that

can be used in a light context while maintaining a high level of security.

In the REST API light context, the following actors are defined, following the definitions

defined in standards, including [RFC6749], [OIDC-CORE]:

• The Resource Owner (RO): The RO is the entity capable of granting access to a

protected resource. When the RO is a person it is referred to as an end user.

• The Resource Server (RS): The server hosting the (potentially) protected

resources "owned" by the RO. The RS is the server that implements the REST API

following this profile.

• The Client: This is the client application. The Client accesses the Resources

provided by the RS owned by the RO.

• The Authorization Server (AS): The server that issues tokens that can be used for

a Client's authorisation by an RO to access resources on an RS.

• The Identity Provider (IdP): The server that issues claims that can be used to

authenticate an end user ([OIDC-CORE]) and/or a Client (extending [OIDC-CORE]).

The form of credentials that are issued by an AS is called an Access Token (AT). The AT is

usually a string representing an authorization issued to the Client by an AS and is consumed

by the RS.

The Client needs to get authorization and/or authentication claims to access the RO

resources, served in the form of REST APIs by one or more RS. When it operates in a light

context, the Client does not have its own identity (in an OAuth 2.0 sense, it is a public Client)

and so direct authentication and authorization mechanisms for the RO that would be

trusted by the various RS are not usually applicable. Also, the provision of direct

authentication services from the RS is not generally recommended since the Client can have

access to the RO's password. Additionally, direct authentication (i.e., the Client using the

RO's credentials) provides full access to the RO's resources without any granularity of the

allowed access.

To overcome these deficiencies and provide both Authorization and Authentication,

authentication and authorization delegation protocols are being endorsed as mandatory.

For Authorization, the IETF specifies OAuth 2.0 [RFC6749], a protocol for delegated

authorization. OAuth 2.0 specifies mechanisms where a Client can ask a RO for access to RS

resources on behalf of the RO and receive an AT as proof that the RO agreed using an AS.

However, [RFC6749] leaves many aspects unspecified, like the AT and the scope definition

format. The current profile further specifies the token format and the supported

authorization flows.

ISA² IPS REST API Profile – Version 1.0

11

For Authentication, OpenAPI specification endorses OpenID Connect [OIDC-CORE], a profile

of OAuth v2.0 used for delegated authentication. OpenID Connect further specifies the AT

format, which is based on JWT specification.

This profile mandates using the OAuth v2.0 profile for authorization and recommends using

OpenID Connect profile for authentication of an end user and Assertion Framework for

OAuth 2.0 Client Authentication [RFC7521] for authentication of a Client.

5.1.1 Architecture Topologies

In a multi-service architecture, the service deployment topologies can vary, depending on

the application domain, security and trust aspects, etc. Each such topology poses different

challenges on interoperability and security considerations. This section defines the

Authorization and IdP service topologies allowed by this profile and the different rules

applicable to each of them.

5.1.1.1 Authorization Server Deployment Topology

5.1.1.1.1 Auth-Int Topology – Resource Server-provided Authorization Server

In this deployment topology, the AS is considered a part of the RS domain and it is trusted

by the RS. The communication between the RS and the AS is considered as secure and

internal, within a secure domain. However, the trust of the AS by the Client and the RO could

vary.

5.1.1.1.2 Auth-Ext Topology – External Authorization Server

In this deployment topology, the AS is an external trusted third-party service. The

communication between the RS and the AS is not considered secure and internal by default

and extra security measures need to be taken into account. More specifically, when the AS

is an externally deployed service and the AT format sent by the Client is opaque, e.g. is an

authorization code, then:

• The Token Introspection [RFC7662] MUST be supported by the AS and used by the

RS and

• It is RECOMMENDED that the JWT Response for OAuth Token Introspection

[DRAFT-IETF-OAUTH-JWT-INTROSPECTION] be used as the format for Token

Introspection endpoint response.

Conversely, when the AT format sent by the Client is not opaque, then:

• The Token Introspection [RFC7662] MAY be supported by the AS and used by the

RS and

• It is RECOMMENDED that the AT follows the format defined in [RFC9068]

5.1.1.2 Identity Provider Deployment Topology

5.1.1.2.1 IdP-Int Topology – Authorization Server-provided Identity Provider

In this deployment topology, the IdP that provides the authentication service of the RO or

the Client is provided by the AS. The communication between the IdP and the AS is

considered as secure and internal, within a secure domain. However, the trust of the IdP by

the Client and the RO could vary. As the AS and the IdP are considered part of a single

service, is it RECOMMENDED to use OpenID Connect 1.0 [OIDC-CORE] as the authentication

process, which can be combined with the authorization flows required by the RS (see the

section on Authentication Framework Profile).

ISA² IPS REST API Profile – Version 1.0

12

5.1.1.2.2 IdP-Ext Topology – External Identity Provider

In this deployment topology, the IdP that provides the authentication service of the RO or

the Client is an external trusted third-party service. The authentication of the RO MUST be

done using the predefined secure protocols as they are defined in the Assertion Framework

for OAuth2.0 Client Authentication [RFC7521] and it is RECOMMENDED to be used for the

Client Authentication. Furthermore, the AS MUST support either the Security Assertion

Markup Language (SAML) 2.0 Profile for OAuth 2.0 Client Authentication and Authorization

Grants [RFC7522] or the JSON Web Token (JWT) Profile for OAuth 2.0 Client Authentication

and Authorization Grants [RFC7523]. The use of IdP's that provide OpenID Connect 1.0

[OIDC-CORE] as described also in [RFC7523], is RECOMMENDED (see the section on

Authentication Framework Profile).

5.1.1.3 Topological Combinations

In the following table, the possible combinations from the supported topologies are

provided:

Topological

Combinations

IdP-Int IdP-Ext

Auth-Int See Figure 2: Internal Authorization

Server with Internal Identity

Provider

See Figure 3: Internal Authorization

Server with External Identity

Provider

Auth-Ext See Figure 4: External Authorization

Server with Internal Identity

Provider

See Figure 5: External Authorization

Server with External Identity

Provider

All diagrams below illustrate the scenario where the RO is an end user.

Figure 2 Internal Authorization Server with Internal Identity Provider

ISA² IPS REST API Profile – Version 1.0

13

Figure 3 Internal Authorization Server with External Identity Provider

Figure 4 External Authorization Server with Internal Identity Provider

ISA² IPS REST API Profile – Version 1.0

14

Figure 5 External Authorization Server with External Identity Provider

5.1.2 OAuth 2.0 Authorization Framework Profile

OAuth 2.0 is the IETF Standard for Authorization [RFC6749]. It defines how the RO provides

his consent to the Client to access his resources at the RS, by issuing an AT through an AS

which is trusted by both the RS and the Client. This is achieved by the execution of

predefined flows, also known as grants, between the client application, the RO (User) and

the RS (the REST API implementation). OAuth 2.0, in its original specification, defines

multiple flows that can be applied on multiple deployment scenarios, like a web browser

application, a mobile native application, a service-to-service application, etc. However,

many of these flows have been deprecated, found insecure or updated in more recent RFCs.

The profile states which flows MUST be supported and which MUST NOT be supported by

conformant REST API implementations.

Furthermore, the OAuth 2.0 specification does not include the definition of the token

structure and integrity mechanisms. This profile further defines and restricts the type of

tokens that MUST be supported by conformant REST API implementations in order to

enhance confidentiality, integrity, overall security and interoperability.

5.1.2.1 Profiled OAuth Grants

The following OAuth Grants have been found secure and can be used. At least one of them

MUST be used.

5.1.2.1.1 Authorization Code with PKCE Grant

Authorization Code with PKCE Grant is a flow defined in [RFC7636] that is meant to replace

the simple Authorization Code Grant and also makes obsolete the Implicit Grant. The

Authorization Code with PKCE Grant MUST be supported by the REST API implementations

when the RO is an end user.

5.1.2.1.2 Client Credentials Grant

The Client Credentials Grant is a grant mostly meant to be used by service-to-service
authorization and SHOULD be used only when the Client is considered a safe, confidential

system. The flow MUST NOT be used when the Client is a browser or a native mobile app.

ISA² IPS REST API Profile – Version 1.0

15

5.1.2.1.3 Assertion Bearer Grant

Assertion Framework for OAuth 2.0 Client Authentication and Authorization

Grants [RFC7521] is an extension to the OAuth 2.0 assertion framework and provides a way

to use assertions for granting authorization. [RFC7521] defines the framework for using

assertions and [RFC7522] and [RFC7523] formally implement it. [RFC7522] defines how

SAML 2.0 Assertions can work as tokens for granting authorization and [RFC7523] defines

how OpenID Connect tokens can be used as tokens for authorization grants. [RFC7521] and

at least one of its implementations ([RFC7522] or [RFC7523]) MUST be supported by the

AS when the IdP-Ext topology is used by the RS implementer.

5.1.2.2 Forbidden OAuth Grants

The following OAuth Grants have been found insecure and MUST NOT be used:

5.1.2.2.1 Authorization Code Grant

Authorization Code Grant has been found insecure and MUST NOT be used. Use

Authorization Code with PKCE Grant instead.

5.1.2.2.2 Implicit Grant

The Implicit Grant has been found insecure and MUST NOT be used. Use Authorization Code

with PKCE Grant instead.

5.1.2.2.3 Resource Owner Password Credentials Grant

The Resource Owner Password Credentials Grant is an insecure flow, defined as a legacy

system support mechanism for granting authorization and it MUST NOT be used.

5.1.2.3 Access Token Format

OAuth 2.0 does not define in its core specification the structure of the AT. This means that

the token can follow any kind of structure. AT's, issued by the token endpoint of the AS to

be used by the Client, can be of two different types:

• opaque tokens, which are strings that do not carry explicit authorization

information and for which the receiving RS must use a validation mechanism,

usually provided by the AS;

• concrete tokens, which carry all the authorization information required and can be

validated directly by the RS without the need to check with the AS.

When the AT is opaque, e.g. an UUID, the RS cannot validate it in-place and must use

verification functionality from the AS. When using opaque tokens and when the AS and the

RS are not co-located, are not run by the same entity, or are otherwise separated by some

boundary (Auth-Ext Topology), the AS MUST implement the OAuth 2.0 Token

Introspection [RFC7662] interface and the response token of the Token Introspection

interface SHOULD conform to the JWT Response for OAuth Token Introspection [DRAFT-

IETF-OAUTH-JWT-INTROSPECTION].

When the AT is not opaque, the tokens SHOULD conform to the JSON Web Token (JWT)

Profile for OAuth 2.0 Acess Tokens [RFC9068]. Unsigned custom tokens MUST NOT be used.

5.1.3 Authentication Framework Profile

5.1.3.1 User Authentication Framework Profile

The OAuth 2.0 framework has been defined for implementing authorization grants between

the RO, the Client and the RS, using an AS as a trusted third party. However, OAuth 2.0 does

ISA² IPS REST API Profile – Version 1.0

16

not explicitly specify how authentication of an end user can be done, leaving the door open

to many different and incompatible implementations.

OpenID Connect v1.0 [OIDC-CORE] fills this gap, by creating an Identification Layer on top

of the OAuth 2.0 framework, by introducing a new additional kind of token, called the ID

Token that coexists with the typical AT's required by OAuth 2.0.

When end-user authentication is required, then the REST API implementation SHOULD use

OpenID Connect for the RO authentication. Open ID Connect uses the same grants as OAuth

2.0 and thus the same restrictions apply to those grants as described in the section on

Profiled OAuth Grants, with the exception documented in the section on Profiled OpenID

Connect Flows. Furthermore, in order to promote interoperability and compatibility with

the eIDAS eID regulatory framework, it is RECOMMENDED that the OpenID Connect for

Identity Assurance 1.0 profile [OIDC-DRAFT-ID-ASSUR] of the ID token SHOULD be

supported by the IdP and both the RS and the Client. OpenID Connect MUST be used when

an external deployment topology is used for authentication (IdP-Ext topology).

In addition to end-user authentication, the authentication of the Client is also

RECOMMENDED when possible.

5.1.3.2 Client Authentication Framework Profile

When Clients interact with AS's, they need to authenticate to the AS for the issuing of the

AT. Several mechanisms are defined in the OAuth 2.0 specification for client authentication.

This profile RECOMMENDS using the Assertion Framework for OAuth 2.0 Client

Authentication [RFC7521]. It supports both the Security Assertion Markup Language

(SAML) 2.0 Profile for OAuth 2.0 Client Authentication and Authorization Grants

[RFC7522] and the JSON Web Token (JWT) Profile for OAuth 2.0 Client Authentication and

Authorization Grants [RFC7523] when external deployment topologies are used for both

authentication and authorization (Auth-Ext and IdP-Ext topology).

5.1.3.3 Profiled OpenID Connect Flows

As OpenID Connect is based on OAuth 2.0, the same rules and profiles of grants apply also

to OpenID Connect with one exception: for OpenID Connect to work properly on

applications that are browser-based, for example, the Hybrid Flow MAY be supported. Since

the Hybrid Flow requires the Implicit Grant to be provided, this profile allows the use of the
Implicit Grant only as part of the OpenID Connect Hybrid Flow, and only when requesting

short-lived tokens like the Identity Token.

5.2 SECURITY

5.2.1 Transport Level Security

This profile mandates the use of Transport Layer Security. TLS provides communication

integrity, confidentiality and authentication. Server authentication, using a server

certificate, allows the client to make sure the HTTPS connection is set up with the right

server. REST API implementations conformant to this profile MUST therefore use TLS

1.2 [RFC5246] or TLS 1.3 [RFC8446]. TLS 1.3 is RECOMMENDED.

In line with guidance from ENISA, the following algorithms MUST be used when using TLS:

ISA² IPS REST API Profile – Version 1.0

17

Key exchange Certificate Verification Bulk Encryption Hashing

ECDHE ECDSA

RSA

AES_256_GCM

CHACHA20_POLY1305

AES_128_GCM

(HMAC-)SHA-384

(HMAC-)SHA-256

All other algorithms MUST NOT be used for Key exchange, Certificate Verification, Bulk

Encryption and Hashing. Furthermore, TLS Compression MUST NOT be used.

Other less secure protocols, such as SSL 2.0, SSL 3.0, TLS 1.0 and TLS 1.1 MUST NOT be used.

5.2.2 Message And Payload Level Security

This profile defines the security mechanisms that MUST apply for both payload and

message-level security when such a security mechanism is considered by the REST API. For

both payload-level and message-level signatures, the profile enforces the use of JWS

detached signatures following the HttpHeaders Mechanism of the ETSI ESI JAdES

specification [ETSI-JADES]. This structure is enforced for the following reasons:

• JWS, being a simple JSON Structure, can be supported by clients in a light context,

while specifications like the ETSI ESI ASIC containers are more difficult to do.

• JWS in detached form does not change the payload structure, meaning that a client

not supporting the validation of signature can continue to operate as if there was no

signature applied.

• JWS Detached can be transported using an HTTP header, making its presence

unintrusive and easily transportable.

Following ENISA's Good Practises in Cryptography – Primitives and Schemes [ENISA-

CRYPTO-2020], the following algorithms found in [RFC7518] are selected for this profile, to

be used in the following form:

• The ECDSA Algorithm with SHA-256 and P-256 Curve MUST be supported, with a

key length of at least 256 bits. The value "ES256" for the alg parameter MUST be

used in this case as defined in [RFC7518].

• The EdDSA Algorithm [RFC8032] using one of the curves defined in [RFC7748]

SHOULD be supported and is RECOMMENDED for use, with a key length of at least

256 bits. The value "EdDSA" for the alg parameter MUST be used in this case and

the curve shall be encoded in the crv parameter as defined in [RFC8037].

5.2.2.1 Payload Security

Payload security ensures the integrity and authenticity of the payload part of the message.

The typical mechanisms to achieve this are digital signatures. When payload security is

considered, the Detached JSON Web Signatures following the JAdES specification [ETSI-

JADES] MUST be applied with the following restrictions:

• The JWS content (Data to be Signed) MUST be detached from the signatures as

defined in [RFC7515] Appendix F.

• The signed SigD parameter object MUST be present in the JWS headers, denoting

the use of the JAdES detached header profile.

• The value of the mId parameter MUST be set to

"http://uri.etsi.org/19182/HttpHeaders".

ISA² IPS REST API Profile – Version 1.0

18

• The pars array of the SigD MUST contain only the element "digest", denoting that

for the calculation of the signature only the digest of the HTTP payload must be

taken into account, according to [RFC3230].

• The alg parameter MUST be set to the correct value depending on the algorithm

used (see above).

• If the alg parameter is set to "EdDSA", the crv parameter MUST be set to the

correct value (see above).

The JWS structure shall be carried in HTTP header field named edel-payload-sig. The

header field can be used in both requests and responses. The header field MUST not appear

more than once in a message; if a message contains multiple edel-payload-sig header

fields, the receiver MUST consider the signature invalid.

5.2.2.2 Message-Level Security

The Introduction section of [DRAFT-IETF-HTTPSBIS-MSG-SIGS] details why message

integrity and authenticity are critical to the secure operation of many HTTP/REST

applications.

When Message-Level Security is considered, the HttpHeaders Mechanism of the JAdES

Specification [ETSI-JADES] MUST be used, with the following restrictions applied:

• The JWS content (Data to be Signed) MUST be detached from the signatures as

defined in [RFC7515] Appendix F.

• The signed SigD parameter object MUST be present in the JWS headers, denoting

the use of the JAdES detached header profile.

• The value of the mId parameter MUST be set to

"http://uri.etsi.org/19182/HttpHeaders".

• The pars array of the SigD MUST contain at least the following elements:

o the element "(request-target)", for containing the HTTP Request URI

o the element "host", for containing the host the message was submitted to, if

present

o the element "origin", for containing the scheme, hostname, and port from

which the request was initiated, if present

o the element "content-encoding", if present

o the element "content-type", if present

o the element "content-length", if present

o the element "digest", for taking into account the Digest header that contains

the hash value of the HTTP payload.

• The alg parameter MUST be set to the correct value depending on the algorithm

used (see above).

• If the alg parameter is set to "EdDSA", the crv parameter MUST be set to the

correct value (see above).

ISA² IPS REST API Profile – Version 1.0

19

Implementations that make use of the HTTP Header fields for data representation SHOULD

also include these header fields in the pars array.

The JWS structure MUST be carried in HTTP header field named edel-message-sig. The

header field can be used in both requests and responses. The header field MUST not appear

more than once in a message; if a message contains multiple edel-message-sig header

fields, the receiver MUST consider the signature invalid.

5.2.2.3 Signature Representations

Both Payload and Message-Level Security are realised using the JAdES profile [ETSI-JADES]

of the JSON Web Signature. The following snippet shows the OpenAPI declaration and usage

of the JWS detached signature used in an HTTP Response:

openapi: 3.1.0

info:

 title: JAdES Signatures

 summary: An example showcasing JAdES signatures

 description: An example showcasing JAdES signatures as JWS detached

 signatures for securing a sample REST endpoint

 (/certificate)

 termsOfService: https://domain.server.io/terms-of-service

 license:

 name: EUPL-1.2 or later

 url: https://eupl.eu/1.2/en/

 version: 1.0.0

 x-edelivery:

 lifecycle:

 maturity: supported

 publisher:

 name: ACME Publisher

 URL: https://www.acme-publisher.org/

externalDocs:

 description: The ISA² IPS REST API Core Profile

 url: https://joinup.ec.europa.eu/collection/api4dt/document/isa2-ips-rest-

api-profile

servers:

- url: https://domain.server.io/v2

tags:

- name: DetachedPayloadSignature

 description: Operations using payload security

- name: DetachedMessageSignature

 description: Operations using message-level security

paths:

 /openapi:

 get:

 summary: Returns the OpenAPI Document for the API

 ...

 responses:

ISA² IPS REST API Profile – Version 1.0

20

 200:

 description: ...

 content: {

 $ref: 'https://spec.openapis.org/oas/3.1/schema/2021-05-20'

 ...

 }

 /certificate:

 get:

 tags:

 - DetachedMessageSignature

 summary: Get a Certificate

 securitySchemes:

 OAuth2:

 type: oauth2

 flows:

 authorizationCode:

 authorizationUrl: https://example.com/api/oauth/dialog

 scopes:

 send:message: send a message

 ...

 responses:

 200:

 headers:

 edel-message-sig:

 $ref: '#/components/headers/edel-message-sig'

 description: List of Certificates

 content: { ... }

components:

 headers:

 edel-payload-sig:

 schema:

 $ref: '#/components/schemas/JwsCompactDetached'

 edel-message-sig:

 schema:

 $ref: '#/components/schemas/JwsCompactDetached'

 schemas:

 JwsCompactDetached:

 title: The format for the message-level and payload signature

 description: Defines the string pattern as a regular expression that

 MUST be followed to represent detached JWS compact tokens

 "$id": https://raw.githubusercontent.com/isa2-api4ips/rest-api-

profile/main/api-core-profile/components/schemas/jws-compact-detached.json

 "$schema": https://json-schema.org/draft/2020-12/schema

ISA² IPS REST API Profile – Version 1.0

21

 type: string

 format: jws-compact-detached

 pattern: ^[A-Za-z0-9_-]+(?:(\\.\\.)[A-Za-z0-9_-]+){1}

5.3 LIFECYCLE MANAGEMENT
REST APIs are typically published to the web and then consumed by clients. This builds a

dependency between the clients that are considered the consumers of the API and the

producer which is the API implementation service. Properly governed APIs should have a

streamlined process of evolution and change introduction. This profile mandates certain

aspects of the lifecycle of the APIs, like versioning and deprecation.

5.3.1 API Versioning Semantics

Conformant APIs MUST use semantic versioning [SEMVER] for their lifecycle management.

In semantic versioning, the version number is split into three different sections: the major

version, the minor version and the patch version. The following sections describe how

semantic versioning MUST apply.

Any changes of the documentation of a REST API MUST be considered as changes of the API

itself and treated accordingly from a versioning standpoint.

It should be noted that the prescriptions of this section apply only when the API

specification and the deployed version are synchronised. In situations where an API

specification evolves independently from the deployed version, e.g. it is provided as a

deployable/implementable standardised specification with a separate lifecycle, the

version deployed at the server MUST be considered and not the version of the API

specification.

For example, a client implementing a more recent version of a standardised API,

which the server does not support yet, is not compatible with the server, as it might

use functionality found in the newer version of the API specification that is not yet

implemented by the server.

5.3.1.1 Backward-compatible changes

The API designer should strive for API evolution and backward-compatible changes rather

than backward-incompatible changes with existing client code.

Backward-compatible changes that do not affect any of the clients include the addition of

new operations and schemas. Also, depending on the client's expectations, the addition of

optional fields into pre-existing schemas MAY be considered a backward-compatible

change.

5.3.1.2 Backward-incompatible changes

The API designer might require to introduce a backward-incompatible change with existing

client code. The following changes are considered backward-incompatible:

• Removing, renaming, or moving API entities such as:

o operation endpoints

ISA² IPS REST API Profile – Version 1.0

22

o HTTP methods associated with endpoints

o operation query, body, or header parameters

o schema properties

o security schemes

• Changing the way how existing features need to be used, e.g. by introducing new

preconditions to be fulfilled

• Changing an already present workflow

• Making optional parameters or schema properties mandatory

• Changing documented functional or non-functional behaviour in significant ways

Furthermore, the REST API designer may consider any other changes that are not strictly

breaking as backward-incompatible, and thus warranting a major version upgrade, if there

is a potential impact of the current client base that requires a proper migration period.

Also, depending on the client's expectations, the addition of optional fields into pre-existing

schemas SHOULD be considered a backward-incompatible change.

5.3.2 API Lifecycle

APIs conformant to this profile MUST publish information about their maturity level. To

provide lifecycle metadata of the API such as its maturity, deprecation and sunset, the

OpenAPI Document MUST contain the info.x-edelivery.lifecycle object following

the below structure:

Field Name Type Description Optionality

maturity string The maturity level of the API. It MUST contain one of the

following values:

• development

• supported

• deprecated

Mandatory

deprecatedAt string The date when the API has been deprecated. The date

format MUST follow [RFC3339]

Optional

sunsetAt string The date when the API will be sunset. The date format

MUST follow [RFC3339]

Optional

5.3.2.1 Deprecation

Deprecation of resources and operations is considered a mechanism for a smooth transition

between major versions. Resources and operations affected by backward-incompatible

changes MUST be marked as deprecated before being removed or otherwise changed in a

new major version of the API. Deprecation of the API could be applied at the operation level

(resource + HTTP verb) or for the API as a whole.

When deprecating individual operations, the use of the deprecated attribute for the

concerned operation(s) MUST be set to true in the OpenAPI Document of the API.

Furthermore, the Deprecation HTTP Response Header for the specific operation MUST

ISA² IPS REST API Profile – Version 1.0

23

be set to true, according to the Deprecation Response Header Internet-Draft [DRAFT-IETF-

HTTPAPI-DPRC-HDR].

When deprecating the API as a whole, the OpenAPI Document of the API must contain in the

info.x-edelivery.lifecycle property the following declared attributes:

• The info.x-edelivery.lifecycle.maturity attribute MUST be set to

deprecated.

• The info.x-edelivery.lifecycle.deprecatedAt attribute MUST be set to the

date the API was deprecated.

Example:

OpenAPI:

 ...

 info:

 ...

 x-edelivery:

 lifecycle:

 maturity: deprecated

 deprecatedAt: 2020-12-31

 ...

Furthermore, when the API is deprecated as a whole, the Deprecation HTTP Response

Header for every operation MUST also be set to true, according to the Deprecation Response

Header Internet-Draft [DRAFT-IETF-HTTPAPI-DPRC-HDR].

5.3.2.2 Sunset

Sunsetting of operations is done with the use of semantic versioning. New major versions

of the API MUST have all the deprecated operations of the previous major versions removed.

It is recommended practice to announce deprecation sufficiently in advance to allow clients

to upgrade.

For sunsetting the API, the OpenAPI Document of the API must contain in the info.x-

edelivery.lifecycle property the following declared attributes:

• The info.x-edelivery.lifecycle.maturity attribute MUST be set to

deprecated.

• The info.x-edelivery.lifecycle.deprecatedAt attribute MUST be set to the

date the API was deprecated.

• The info.x-edelivery.lifecycle.sunsetAt attribute MUST be set to the date

the API will be withdrawn and not accessible any more.

Example:

OpenAPI:

 ...

 info:

ISA² IPS REST API Profile – Version 1.0

24

 ...

 x-edelivery:

 lifecycle:

 maturity: deprecated

 deprecatedAt: 2020-12-31

 sunsetAt: 2021-02-28

 ...

Furthermore, when the API is marked as sunset, the Deprecation HTTP Response Header

for every operation MUST also be set to true, according to the Deprecation Response Header

Internet-Draft [DRAFT-IETF-HTTPAPI-DPRC-HDR] and the Sunset HTTP Response

Header [RFC8594] for every operation must be set to the date the API is to be sunset.

5.3.3 API Deployment Considerations

Following the current best practices, the API MUST declare its current major version

number in the URL, using URL versioning. Only the major number of the API version MUST

be used in the URL. The following pattern MUST be applied to the API URL:

https://{domain}/{baseURL}/v{version.major}/

The following table explains the API syntax pattern:

URL Part Description

domain the domain name the URL is deployed at (server)

baseURL the base URL of the deployed API

version.major The major version number of the API, from its semantic API versioning

5.4 COMMON SEMANTICS

5.4.1 REST API Design

According to section 5.2 in [FIELDING-2000],

[t]he key abstraction of information in the REST architecture is the notion of resource.

Any information that can be named can be a resource: a document or image, a temporal

service (e.g. "today's weather in Los Angeles"), a collection of other resources, a non-

virtual object (e.g. a person), and so on. [...] A resource is a conceptual mapping to a set

of entities, not the entity that corresponds to the mapping at any particular point in time.

Resources are addressed using URIs. The URI path conveys a REST API’s resource model,

with each forward slash-separated path segment corresponding to a unique resource

within the model’s hierarchy. Implementers SHOULD follow this profile, which defines the

typical structure of a resource URI and the naming conventions for the specific resource

archetypes: the document, the collection, the store and the controller.

5.4.1.1 URI Structure

According to [RFC3986], the generic URI syntax consists of a hierarchical sequence of

components referred to as the scheme, authority, path, query, and fragment as shown in the

example below.

https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm#sec_5_2

ISA² IPS REST API Profile – Version 1.0

25

Scheme Authority Resource Path Query Fragment

https :// example.com:8042 /messaging/messages ?from=44556 #subject

This profile enforces the following resource path naming conventions and rules:

• Forward slash separator (/) MUST be used to indicate a hierarchical relationship.

The forward slash (/) character is used in the resource path to indicate a

hierarchical relationship between resources.

• A trailing forward slash (/) MUST NOT be included in URIs. A REST API MUST

generate and communicate clean URIs and SHOULD be intolerant of any client’s

attempts to identify a resource imprecisely. REST APIs conformant to this profile

SHOULD NOT expect a trailing slash and SHOULD NOT include them in the links that

they provide to clients.

• Resource path segments MUST be separated using a hyphen (-). In particular, in

the case of resource identifiers, the hyphen (-) MUST be used instead of a space,

but other special characters are allowed.

• Query parameter names MUST be separated using underscore (_).

• Resource paths and query strings MUST URL encode data into UTF-8 octets.

• Sub-resource collections MAY exist directly beneath an individual resource. This

should convey a relationship to another collection of resources.

o /messages/{message-id}/responses

• Resource identifiers SHOULD follow the recommendations described in the

subsequent section.

• Resources MUST conform to one of the defined resource archetypes (see section on

Resource Archetypes), following their name convention rules.

• File extensions SHOULD NOT be used in Resource Paths in order to select resource

representations. The best practice is to use headers in the HTTP request to define

the file types that are used/expected.

The following table provides a formal grammar on the resource path and query structure

that MUST be followed:

Term Description Formal Definition Example

resource-

path

The hierarchical URI sub

structure defining an

addressable resource

'/' base-url '/'

version ('/'

namespace)* ('/'

resource)+

/archive-

system/v2/messaging-

service/messages/123-121

base-url The base URL of the deployed

API

ALPHA (ALPHA |

DIGIT | '-')*

archive-system

version The version of the deployed

API

'v' (DIGIT)+ v2

ISA² IPS REST API Profile – Version 1.0

26

Term Description Formal Definition Example

namespace Namespace identifiers are

used to provide a context and

scope for resources. They are

determined by logical

boundaries implemented by

the API platform.

ALPHA (ALPHA |

DIGIT | '-')*

messaging-service

resource The hierarchical structure of a

(sub)resource

resource-name

['/' resource-id]

messages/123-121

resource-

name

The name of the resource ALPHA (ALPHA |

DIGIT | '-')*

messages

resource-id The identifier of a resource value 123-121

query The filter string name '=' value

('&' name =

value)*

subject=report

name The filter name ALPHA (ALPHA |

DIGIT | '_')*

subject

value A value that is potentially URL

encoded (used as a resource

identifier or as a filter value)

URL-encoded

value

report%202020

Note: ALPHA and DIGIT are used as defined in section 6.1 of [RFC2234].

5.4.1.2 Resource Identifiers

Resource identifiers identify a resource or a sub-resource. They MUST conform to the

following guidelines:

• The lifecycle of a resource identifier MUST be defined as part of resource's domain

model, where it can be guaranteed to uniquely identify a single resource.

• A UUID or a hash value (e.g. HMAC-based) SHOULD be used as a resource identifier.

• For security and data integrity reasons, all sub-resource IDs MUST be scoped within

the parent resource only. Example:

o /users/21725f10-b819-4dea-ad76-0d169652274b/linked-

accounts/5100a97c-dfd8-480d-ba5a-a24d0c278e92

Even if the account "5100a97c-dfd8-480d-ba5a-a24d0c278e92" exists, it MUST NOT be

returned unless it is linked to the user "21725f10-b819-4dea-ad76-0d169652274b".

• Resource identifiers SHOULD try to use ASCII characters. There SHOULD NOT be

any ID using UTF-8 characters.

• Resource identifiers values MUST perform URL encoding for any character other

than URI unreserved characters (as defined in section 2.3 of [RFC3986]).

https://datatracker.ietf.org/doc/html/rfc2234#section-6.1
https://datatracker.ietf.org/doc/html/rfc3986#section-2.3

ISA² IPS REST API Profile – Version 1.0

27

5.4.1.3 Resource Archetypes

5.4.1.3.1 Document

A document resource is a singular concept that is akin to an object instance. Document

resources are usually inside collection resources. A document’s state representation

typically includes both fields with values and links to other related resources. Singular

nouns or resource identifiers MUST be used to denote document resource archetypes.

http://example.com/api/v1/messaging/messages/{message-id}

http://example.com/api/v1/user-management/users/admin

5.4.1.3.2 Collection

A collection resource is a server-managed list of resources. Clients may propose new

resources to be added to a collection. However, it is up to the collection to choose to create

a new resource or not. A collection resource chooses what it wants to contain and also

decides the URIs of each contained resource. Plural nouns MUST be used to denote

collection resource archetypes.

http://example.com/api/v1/messaging/messages

http://example.com/api/v1/user-management/users/{user-id}/accounts

5.4.1.3.3 Store

A store is a client-managed resource repository. A store resource lets an API client put

resources in, get them back out, and decide when to delete them. A store never generates

new URIs. Instead, each stored resource has a URI. The URI was chosen by a client when it

was initially put into the store. Like collections, plural nouns MUST be used to denote store

resource archetypes.

http://example.com/api/v1/song-management/users/{user-id}/playlists

5.4.1.3.4 Controller

A controller resource models a procedural concept. Controller resources are like

executable functions, with parameters and return values, inputs and outputs. Controllers

are the exception to the rule, using verbs to denote controller archetypes and they MUST

appear as the last segment in a resource URI.

http://example.com/api/v1/cart-management/users/{user-id}/cart/checkout

http://example.com/api/v1/song-management/users/{user-id}/playlist/play

5.4.1.4 Query Parameters

Following the HTTP URI structure and the REST API best practices, the query parameters

must be placed in the query component after the '?' character that denotes the start of the

query component. The following rules apply to the query parameters:

• Query parameter names MUST be separated using underscore (_).

• Query parameter names MUST start with a letter and SHOULD be in all lowercase.

Only alphanumeric characters and the underscore (_) character SHALL be used.

• Query parameter values MUST be URL encoded.

• Query parameters SHOULD be optional.

• Some query parameter names are reserved, as indicated in the section below.

ISA² IPS REST API Profile – Version 1.0

28

5.4.1.4.1 Pagination and Query Parameters

A common use of query parameters is to provide information on the pagination of results

when collection resources are returned. The profile defines the following query parameters

that SHOULD be used for result pagination:

• limit: The number of resources of a collection to be returned from a request. The

limit MUST be a positive integer

• offset: The offset the response should start providing resources of the collection

from. It MUST be a non-negative integer

• cursor: An alternative to using the offset is to provide an identifier of the position

as of which the next resources of the collection should be returned. The cursor

MUST be an (opaque) string

• q: A generic query parameter used to express complex queries on the resource. The

structure of the query string is resource specific and MUST be defined per resource

• sort: Used to express the sorting order of resources in a collection. It MUST follow

the following regular expression: (-|+)<field-name> (',' (-|+)<field-

name>)* where:

o "+" denotes ascending order and "-" descending order,

o <field-name> is a string representation of a field of the resource,

o the sort order of resources should follow the order of the fields.

As an example, to obtain the third page of one hundred results, sorted by the title of the

playlist in ascending order and by the position in the playlist in descending order, the

following query string would be provided:

https://api.example.org/endpoint?limit=100&offset=200&sort=+playlist-title,-

playlist-position

When offset-based pagination is used, the response SHOULD provide pagination hints. It is

RECOMMENDED to provide such hints by including a the Link header [RFC5988] in the
response with links with relation types first, previous, next and last, e.g.:

Link: <https://api.example.org/endpoint?offset=0>; rel=first,

 <https://api.example.org/endpoint?offset=100>; rel=previous,

 <https://api.example.org/endpoint?offset=300>; rel=next,

 <https://api.example.org/endpoint?offset=700>; rel=last

When cursor-based pagination is used, the response MUST provide the value of the next

cursor. It is RECOMMENDED to provide this value by including a Link header [RFC5988] in

the response with a link with relation type next, e.g.:

Link: <https://api.example.org/endpoint?cursor=cGxheWxpc3Q6WDc2QjBRVE45>;

rel="next"

5.4.1.4.2 Pre-defined Projection Parameters

The profile recommends the support of two different resource projections, a minimal one

and a complete one. The complete one will return the full structure of the resource

representation of all the resources of a collection. In contrast, the minimal one returns only

the minimal required structure to distinguish a resource inside the collection. This can be a

single Identifier or a collection of mandatory fields of the resource.

ISA² IPS REST API Profile – Version 1.0

29

The profile RECOMMENDS the use of the Prefer HTTP field as defined in [RFC7240] for

requesting the minimal or complete representation of resources. Specifically, when the

client requires the complete representation to be provided it SHOULD add the Prefer header

with the value "return=representation" as shown below.

Prefer: return=representation

When the client requires the minimal representation to be provided it SHOULD add the

Prefer header with the value "return=minimal" as follows:

Prefer: return=minimal

As the "Prefer" header is optional, it MUST be declared in the operations of the OpenAPI

Document when supported by the API.

5.4.2 Common Payload Representations

The profile RECOMMENDS the use of predefined vocabularies as common representations

of resources. An API implementer conformant to this profile SHOULD use these

representations when possible instead of creating a new schema representation from

scratch. The following registries and repositories provide re-usable vocabularies in JSON-

LD format.

5.4.2.1 ISA² Core Vocabularies

The ISA² Core Vocabularies [ISA-CORE-VOC] are simplified, reusable, and extensible data

models that capture the fundamental characteristics of an entity, such as a person or a

public organisation, in a context-neutral manner. ISA² has developed the Core Vocabularies

for public administrations in an open process with the active involvement of the SEMIC

action stakeholders.

The Core Vocabularies are:

• Core Person: captures the fundamental characteristics of a person, e.g. name,

gender, date of birth, location.

• Core Business: captures the fundamental characteristics of a legal entity (e.g. its

identifier, activities) which is created through a formal registration process,

typically in a national or regional register.

• Core Location: captures the fundamental characteristics of a location, represented

as an address, a geographic name or geometry.

• Core Criterion and Core Evidence: describes the principles and the means that a

private entity must fulfil to become eligible or qualified to perform public services.

A Criterion is a rule or a principle that is used to judge, evaluate or test something.

An evidence is a means to prove a Criterion.

• Core Public Organisation: describes public organisations in the European Union.

The vocabularies are provided in JSON-LD format, making them re-usable in a REST API

implementation and can be extended according to the ISA² Core Vocabulary rules.

5.4.2.2 Schema.org

Schema.org is a collaborative, community activity with a mission to create, maintain, and

promote schemas for structured data on the Internet, on web pages, in email messages, and

beyond. Schema.org vocabulary can be used with many different encodings, including RDFa,

http://schema.org/
http://schema.org/

ISA² IPS REST API Profile – Version 1.0

30

Microdata and JSON-LD. These vocabularies cover entities, relationships between entities

and actions, and can easily be extended through a well-documented extension model. REST

API Implementers SHOULD try to reuse representations found in schema.org in JSON-LD

format.

5.4.3 Single and Multipart Resource Representations

The profile supports both the use of single-part and of multipart resource representations.

Single-part representation is used when the request or response resource representation

can be structured in a single body of a single specific content type. In contrast, multipart

representation is used when a compound or multiple representations must be returned or

provided.

5.4.3.1 Single-part Resource Representations

Single-part resource representation is the most common one for structuring request or

response representations. It is used when it is known at design time that the representation

is of a single and one specific media type, e.g. application/json. The HTTP representation

metadata fields are used for any metadata required to further describe and qualify the

representation.

Figure 6 Single-part Resource Representation

5.4.3.2 Multipart Resource Representations

The multipart structure is used when the resource provided cannot be properly

represented using a single body of a single specific media type. When the client needs to

send multiple representations in one message or the server needs to respond with multiple

resource representations to a client's request or provide a compound representation,

consisting of multiple interrelated representations of different content types, the multipart

structures MUST be used according to the following sections.

5.4.3.2.1 Use of multipart for bundling independent representations

When bundling multiple independent payloads in an HTTP message, either Multipart Mixed

or Multipart Parallel MUST be used. When body subparts contained in the message need to

be bundled in a particular order then Multipart Mixed MUST be used. Alternatively, when

the body subparts do not have to follow a particular order, the Multipart Parallel media type

should be used. Any "Multipart" subtypes that an implementation does not recognize must

be treated as being of subtype "Mixed".

ISA² IPS REST API Profile – Version 1.0

31

Figure 7 Multipart Mixed or Multipart Parallel Resource Representation

5.4.3.2.2 Use of multipart for bundling inter-related representations

When bundling multiple representations in an HTTP message of compound objects

consisting of several inter-related body parts and when proper handling cannot be achieved

by individually processing the constituent body parts, but rather only by processing the

HTTP Message as an aggregate, Multipart Related MUST be used. The profile enforces the

use of Multipart Related as defined in [RFC2387]. In Multipart Related, there must always

be a "root" subtype, that only references but is not referenced, and the rest of the subtypes

must be referenced either by the root or by the other subparts.

ISA² IPS REST API Profile – Version 1.0

32

Figure 8 Multipart Related Resource Representation

5.4.3.2.3 Summary

The following table summarises the different multipart variants that MUST be used,

depending on the representation requirements:

Multipart

subtype

RFC Use Case

Mixed [RFC2046] -

Section 5.1.3

Provision of multiple resources with an explicit order

Parallel [RFC2046] -

Section 5.1.6

Provision of multiple resources without an explicit

order

Related [RFC2387] Provision of a compound set of resource
representations to be processed as a single resource

5.4.4 Common Semantics on Methods

This section provides a usage profile of the HTTP Methods as defined in the [RFC7231]. APIs

conformant to this profile MUST only use the following subset of HTTP methods:

Note

Custom methods MUST NOT be used when creating an API based on a specification.

https://datatracker.ietf.org/doc/html/rfc2046#section-5.1.3
https://datatracker.ietf.org/doc/html/rfc2046#section-5.1.6

ISA² IPS REST API Profile – Version 1.0

33

5.4.4.1 GET

GET MUST be used to retrieve a representation of a resource. It is a strict read-only method,

which should never modify the state of the resource. For transfer of a current selected

representation or a specific range of the target resource. (See section 4.3.1 of [RFC7231])

5.4.4.2 HEAD

HEAD MUST be used to only retrieve the HTTP response headers. HEAD returns the same

response as GET, except that the API returns an empty body. It is strictly read-only. For

transfer of HTTP header information of a current selected representation or a specific range

of the target resource. (See section 4.3.2 of [RFC7231])

5.4.4.3 POST

POST MUST be used to create a new resource in a collection or to execute an action resource.

The POST request’s body contains the suggested state representation of the new resource

to be added to the server-owned collection. The response should contain a Location HTTP

header containing the newly created URI. Successful POST requests will usually generate a

201 (if resources have been created), 202 (if the request was accepted but has not been

finished yet), and exceptionally 204 with Location header (if the actual resource is not

returned) response. POST operations may have side effects (i.e. modify state) and are not

required to be idempotent. (See section 4.3.3 of [RFC7231])

5.4.4.4 PUT

PUT MUST be used to update by replacing a stored resource under a consumer-supplied

URI. It MAY be used to insert a new resource in case the client application decides on the

resource identified but this use is NOT RECOMMENDED.

If the URI refers to an already existing resource, the enclosed entity SHOULD be considered

as a new version to replace the one residing on the server. If the target resource is

successfully modified in accordance with the state of the enclosed representation, then a

200 (OK) response SHOULD be sent to indicate successful completion of the request.

If the URI does not point to an existing resource, and that URI is capable of being defined as

a new resource, the server can create the resource with that URI. The server MUST inform

the client by sending a 201 (Created) response to indicate successful creation. PUT

operations may have side effects (i.e. modify state) but MUST be idempotent. (See section

4.3.4 of [RFC7231])

5.4.4.5 PATCH

PATCH MUST be used to update a resource either partially or fully. The enclosed payload

contains a set of instructions describing how a resource currently residing on the origin

server should be modified to produce a new version. The PATCH method affects the

resource identified by the Request-URI, and it also MAY have side effects on other resources;

i.e. new resources may be created, usually sub-resources of the target resource, or existing

ones modified, by the application of a PATCH. PATCH operations are not required to be

idempotent, however, they will often be in practice. (See section 2 of [RFC5789])

5.4.4.6 DELETE

DELETE MUST be used to remove a resource from its parent. Once a DELETE request has

been processed for a given resource, the resource can no longer be found by clients.

Therefore, any future attempt to retrieve the resource’s state representation, using either

GET or HEAD, must result in a 404 (“Not Found”) status returned by the API. (See section

4.3.5 of [RFC7231])

https://datatracker.ietf.org/doc/html/rfc7231#section-4.3.1
https://datatracker.ietf.org/doc/html/rfc7231#section-4.3.2
https://datatracker.ietf.org/doc/html/rfc7231#section-4.3.3
https://datatracker.ietf.org/doc/html/rfc7231#section-4.3.4
https://datatracker.ietf.org/doc/html/rfc7231#section-4.3.4
https://datatracker.ietf.org/doc/html/rfc5789#section-2
https://datatracker.ietf.org/doc/html/rfc7231#section-4.3.5
https://datatracker.ietf.org/doc/html/rfc7231#section-4.3.5

ISA² IPS REST API Profile – Version 1.0

34

5.4.4.7 OPTIONS

OPTIONS MUST be used for requesting information about the communication options

available for the target resource, at either the origin server or an intervening intermediary.

This method allows a client to determine the options and/or requirements associated with

a resource, or the capabilities of a server, without implying a resource action. (See section

4.3.7 of [RFC7231])

5.4.5 Common Semantics on Status Codes

HTTP Semantics [RFC7231] defines the "status codes". The full list of available status codes

is tracked in the IANA Registry defined for this purpose [HTTP-STATUS-CODES-REG]. They

are distinguished as Successful (2xx), Redirection (3xx), Client Error (4xx) and Server Error

(5xx). This section provides a usage profile of the status codes allowed by this profile and

the methods for which they can be used. No other status codes than those profiled below

MUST be returned by the REST API server. To cater for intermediate components that may

not be under the control of the server (e.g., API gateways, firewalls), Clients MUST be

prepared to handle other status codes as well.

For Client Errors and Server Errors, whenever an explanation of the error situation must be

provided, it MUST be represented using Problem+JSON [RFC7807] (see section on Error

Messages).

5.4.5.1 Successful (2xx)

Code Status Methods

200 OK GET, HEAD, PUT, PATCH, POST, DELETE, OPTIONS

201 Created POST, PUT (when PUT creates a new resource)

202 Accepted POST, PUT, PATCH, DELETE

204 No Content POST, HEAD, PUT, PATCH, DELETE, OPTIONS

5.4.5.2 Redirection (3xx)

Code Status Methods

301 Moved Permanently GET, HEAD, POST, PUT, PATCH, DELETE, OPTIONS

303 See Other GET, HEAD, POST, PUT, PATCH, DELETE, OPTIONS

304 Not Modified GET, HEAD

307 Temporary Redirect GET, HEAD, POST, PUT, PATCH, DELETE, OPTIONS

5.4.5.3 Client Error (4xx)

Code Status Methods

400 Bad Request GET, HEAD, POST, PUT, PATCH, DELETE, OPTIONS

401 Unauthorized GET, HEAD, POST, PUT, PATCH, DELETE, OPTIONS

403 Forbidden GET, HEAD, POST, PUT, PATCH, DELETE, OPTIONS

404 Not Found GET, HEAD, PUT, PATCH, DELETE, OPTIONS, POST (if

parent resource is not found)

https://datatracker.ietf.org/doc/html/rfc7231#section-4.3.7
https://datatracker.ietf.org/doc/html/rfc7231#section-4.3.7

ISA² IPS REST API Profile – Version 1.0

35

405 Method Not Allowed GET, HEAD, POST, PUT, PATCH, DELETE, OPTIONS

406 Not Acceptable GET, HEAD, POST, PUT, PATCH, DELETE, OPTIONS

409 Conflict POST, PUT, PATCH

412 Precondition Failed POST, PUT, PATCH, DELETE

413 Payload Too Large POST, PUT, PATCH

415 Unsupported Media

Type

GET, HEAD, POST, PUT, PATCH, DELETE, OPTIONS

5.4.5.4 Server Error (5xx)

Code Status Methods

500 Internal Server Error GET, HEAD, POST, PUT, PATCH, DELETE, OPTIONS

502 Bad Gateway GET, HEAD, POST, PUT, PATCH, DELETE, OPTIONS

503 Service Unavailable GET, HEAD, POST, PUT, PATCH, DELETE, OPTIONS

5.4.6 Error Messages

APIs conformant to this profile MUST use the predefined HTTP Error status codes (4xx and

5xx, see section 6 of [RFC7231]). When this is considered not enough by the API designer,

the Problem+JSON [RFC7807] MUST be used for representing problem details. The status,

title and type attributes MUST always be present. Problem detail syntax can be further

profiled according to [RFC7807].

An example of a Problem Details JSON object is presented below:

{

 "type": "https://example.com/.../problems/resourceNotFound",

 "title": "Citizen not found",

 "status": 404,

 "detail": "No citizen with ID number 0206731645",

 "instance": "problems/d9e35127-e9b1-4201-a211-2b52e52508df"

}

The JSON schema for the Problem Details object is defined as follows:

Problem:

 "$schema": https://json-schema.org/draft/2020-12/schema

 "$id": https://raw.githubusercontent.com/isa2-api4ips/rest-api-

profile/main/api-core-profile/components/schemas/problem.json

 title: A Problem Details object (RFC 7807) defined by the ISA² IPS

 REST API Core Profile

 description: A Problem Details object (RFC 7807) with ISA² IPS REST

 API extensions, used for signals (responses) to

 messages

https://datatracker.ietf.org/doc/html/rfc7231#section-6

ISA² IPS REST API Profile – Version 1.0

36

 type: object

 properties:

 type:

 type: string

 format: uri

 description: An URI reference that identifies the problem type.

 When dereferenced, it SHOULD provide human-readable

 documentation for the problem type (e.g. using

 HTML).

 default: about:blank

 title:

 type: string

 description: A short summary of the problem type, written in

 English and readable for engineers (usually not

 suited for non technical stakeholders and not

 localized).

 example: Service Unavailable

 status:

 type: integer

 format: int32

 description: The HTTP status code generated by the origin server

 for this occurrence of the problem.

 minimum: 200

 exclusiveMaximum: 600

 example: 503

 detail:

 type: string

 description: A human-readable explanation specific to this

 occurrence of the problem.

 instance:

 type: string

 format: uri-reference

 description: A URI reference that identifies the specific

 occurrence of the problem. It may or may not

 yield further information if dereferenced.

 required:

 - status

 - title

 - type

 additionalProperties: true

5.5 DOCUMENTATION
APIs conformant to this profile MUST be documented using the OpenAPI v3 standard, in the

form of an OpenAPI Document. The OpenAPI Document MUST be available under

https://{domain}/{baseURL}/v{version.major}/openapi following the versioning

rules defined in the section on API Deployment Considerations.

ISA² IPS REST API Profile – Version 1.0

37

Furthermore, the latest deployed version of the OpenAPI Document must always be

accessible under https://{domain}/{baseURL}/openapi

5.6 DISCOVERABILITY
The REST API should provide the proper mechanisms for it to become discoverable both in

terms of its structure and operations. For facilitating the discoverability, the API MUST have

a complete OpenAPI v3 document accessible under its base URL (see section on

Documentation). Furthermore, the OpenAPI Document MUST contain:

• The API name using the info.title property;

• The lifecycle status of the API, using the info.x-edelivery.lifecycle

properties as described in the section on API Lifecycle.

Additionally, to support a common requirement of API repositories, the OpenAPI Document

MUST contain the info.x-edelivery.publisher object as described below:

Field

Name

Type Description

name string The name of the publisher

URL string The URL pointing to a web page providing information about the

publisher

The following example provides a summary of the fields required for API discoverability:

info:

 title: The API

 x-edelivery:

 publisher:

 name: The API Publishing Organisation

 url: http://www.organisation.org/

 lifecycle:

 maturity: deprecated

 deprecatedAt: 2020-12-31

 sunsetAt: 2021-12-31

ISA² IPS REST API Profile – Version 1.0

38

6 API DOCUMENTATION

6.1 INTRODUCTION
This profile section provides a ruleset for documenting a REST API conformant to Level 2 of

this profile. For Level 2 profile conformance, the technical documentation of the API MUST

be implemented by creating an OpenAPI Document compliant with the OpenAPI v3

standard [OAS-V3] and adhering to the rules described in this profile section.

6.2 DOCUMENTATION RULES

6.2.1 General

The OpenAPI Document openapi field MUST be at least version 3.1.0. It MUST contain an

externalDocs entry pointing to the ISA² IPS REST API Core Profile as in the following

example.

openapi: '3.1.0'

...

externalDocs:

 description: The ISA² IPS REST API Core Profile

 url: https://joinup.ec.europa.eu/collection/api4dt/document/isa2-ips-rest-

api-profile

...

6.2.2 Info

The Info object provides metadata about the API that can be used also for discoverability.

This profile defines the following specification extensions and rules for the info object.

6.2.2.1 Info Object Specification Extensions

6.2.2.1.1 x-edelivery.lifecycle

The x-edelivery.lifecycle object is a specification extension defined in the API Core Profile.

Its main purpose is to provide lifecycle metadata of the API such as its maturity, deprecation

and sunset. The structure is defined in the API Lifecycle section of the API Core Profile.

6.2.2.1.2 x-edelivery.publisher

The x-edelivery.publisher object is a specification extension defined in the API Core Profile.

Its main purpose is to provide metadata about the publisher of the API, which is commonly

used in API catalogues for better discoverability. The structure in the Discoverability section

of the API Core Profile.

6.2.2.2 Info Object Rules

The Info object provides metadata about the API. The metadata MAY be used by the clients

if needed and MAY be presented in editing or documentation generation tools for

convenience. The following rules apply in the OpenAPI Info object properties:

The info.summary MUST be present and provide a short summary of the API.

The info.description SHOULD be present providing an extensive description of the API.

ISA² IPS REST API Profile – Version 1.0

39

The info.termsOfService URL MUST be present and point to the terms of service of the

API.

The info.license object MUST be present and describe the license of the API.

The info.version MUST be present and MUST follow the semantic version formatting of

Major.Minor.Patch, conforming to the API Versioning Semantics section of the API Core

Profile.

The info.x-edelivery.lifecycle object MUST be present denoting the current

maturity of the API, following the rules defined in the API Lifecycle section of the API Core

Profile.

The info.x-edelivery.publisher object MUST be present, providing information on

the API publisher, according to the Discoverability section of the API Core Profile.

6.2.3 Servers

The servers section of the OpenAPI Document provides the necessary connectivity

information to a target server. The following rules have been defined:

The servers object SHOULD be present providing information on the deployed instances

of the API by the publisher (see info.x-edelivery.publisher).

For each declared Server object, the url MUST start with HTTPS, denoting the use of TLS.

6.2.4 Paths

The Paths object describes the endpoints of the API and, as such, it MUST contain at least

one Path Item object. It MUST contain either one Path Item object "/openapi.json" and/or

one Path Item object "/openapi.yaml", with a parameterless GET operation that responds

with the API's current OpenAPI Document, in accordance with the Documentation section

of the API Core Profile. Each Path Item included in the Paths object MUST have the summary

field present, describing the resource representation of the specific path. Path Items MUST

also follow the guidelines defined in the URI Structure section of the API Core Profile.

6.2.4.1 Path Item Operations

The Path Item Operations describe the API's input and output expectations. These include

the expected parameters, request and response body schema definitions and response

codes.

Each Operation object MUST have their summary field defined, describing the operation's

functionality.

6.2.4.1.1 Operation Response Rules

All operations defined MUST have at least one response with a successful response code

(e.g. in the 2xx range) or a redirection response code (e.g. in the 3xx range). When the

response code is 200 then a response body MUST be present. When the response code is

204 then a response body MUST NOT be present.

When error responses are being defined in the 400−599 range of HTTP Status codes, with

the response body defined, the response body MUST follow the Problem+JSON schema as

defined in the Error Messages section of the API Core Profile by creating a reference to

the Problem+JSON schema in the components of the OpenAPI Document of the ISA² IPS

REST API Core Profile.

ISA² IPS REST API Profile – Version 1.0

40

6.2.4.1.2 Operation Deprecation Rules

When an operation is deprecated, it MUST mark the deprecated field as true.

Furthermore, the Deprecation HTTP Response header, as defined in the OpenAPI

Document of the ISA² IPS REST API Core Profile, MUST be present in the headers section of

the Operation object, by referencing the corresponding pre-defined header from the

OpenAPI Document of the ISA² IPS REST API Core Profile.

6.2.4.1.3 Operation Digital Signature Rules

Operations that provide either a detached message signature or a detached payload

signature MUST declare it in a Header object in the headers section, by referencing the

corresponding pre-defined header from the OpenAPI Document of the ISA² IPS REST API

Core Profile.

Operations that expect either a detached message signature or a detached payload

signature MUST declare it as a parameter object, with the "in" property value denoted as

"header", by referencing the corresponding pre-defined header from the OpenAPI

Document of the ISA² IPS REST API Core Profile.

For operations that include payload signature, the "DetachedPayloadSignature" tag MUST

be present in the tags array of the operation and the detached payload signature MUST

reference the Edel-Payload-Sig header in the OpenAPI Document of the ISA² IPS REST API

Core Profile.

For operations that include message signature, the "DetachedMessageSignature" tag MUST

be present in the tags array of the operation and the detached message signature MUST

reference the Edel-Message-Sig header in the OpenAPI Document of the ISA² IPS REST API

Core Profile.

6.2.5 Security

The security section of the OpenAPI Document provides a complete declaration of which

security mechanisms can be used across the API. The following rules, conforming to the API

Core Profile, MUST be applied:

6.2.5.1 Security Schemes

Security schemes are descriptions of the supported security mechanisms that are supported

by the API. The scheme attribute is allowed to have only the "bearer" value when the HTTP

Request contains a JWT or SAML Token to be used for authentication and authorization.

6.2.5.2 OAuth Flows

The flows field found in the Security Scheme objects typically lists the OAuth flows that are

supported by the API. From the supported flows, the API MUST use only the

clientCredentials and authorizationCode. The implicit and password flows MUST

NOT be used.

6.3 THE OPENAPI DOCUMENT OF THE ISA² IPS REST API CORE PROFILE
The OpenAPI Document of the ISA² IPS REST API Core Profile is a library of pre-defined

components. Many of those components are part of the documentation ruleset, referenced

as stated in the Documentation Rules section.

ISA² IPS REST API Profile – Version 1.0

41

6.3.1 Pre-defined components

This section defines the pre-defined components introduced by this profile. These

components are referenced in the API Core Profile and the Documentation Rules section.

6.3.1.1 Headers

6.3.1.1.1 Edel-Message-Sig

The Edel-Message-Sig header is used to carry a JAdES-compliant JWT detached message

signature that an operation expects as a header parameter or returns as a response header.

It follows the compact detached representation of JWT as per section 7.1 of [RFC7515].

components:

 headers:

 Edel-Message-Sig:

 description: The custom header used for carrying the detached

 signature for signing the HTTP Message

 schema:

 $ref: '#/components/schemas/JwsCompactDetached'

...

 schemas:

 JwsCompactDetached:

 title: The format for the message-level and payload signature

 description: Defines the string pattern as a regular expression

 that MUST be followed to represent detached JWS compact

 tokens

 "$id": https://raw.githubusercontent.com/isa2-api4ips/rest-api-

profile/main/api-core-profile/components/schemas/jws-compact-detached.json

 "$schema": https://json-schema.org/draft/2020-12/schema

 type: string

 format: jws-compact-detached

 pattern: ^[A-Za-z0-9_-]+(?:(\\.\\.)[A-Za-z0-9_-]+){1}

6.3.1.1.2 Edel-Payload-Sig

The Edel-Payload-Sig header is used to carry a JAdES-compliant JWT detached payload

signature that an operation expects as a header parameter or returns as a response header.

It follows the compact detached representation of JWT as per section 7.1 of [RFC7515].

components:

 headers:

 Edel-Payload-Sig:

 description: The custom header used for carrying the detached

 signature for signing the payload

 schema:

 $ref: '#/components/schemas/JwsCompactDetached'

...

 schemas:

 JwsCompactDetached:

https://datatracker.ietf.org/doc/html/rfc7515#section-7.1
https://datatracker.ietf.org/doc/html/rfc7515#section-7.1

ISA² IPS REST API Profile – Version 1.0

42

 title: The format for the message-level and payload signature

 description: Defines the string pattern as a regular expression

 that MUST be followed to represent detached JWS compact

 tokens

 "$id": https://raw.githubusercontent.com/isa2-api4ips/rest-api-

profile/main/api-core-profile/components/schemas/jws-compact-detached.json

 "$schema": https://json-schema.org/draft/2020-12/schema

 type: string

 format: jws-compact-detached

 pattern: ^[A-Za-z0-9_-]+(?:(\\.\\.)[A-Za-z0-9_-]+){1}

6.3.1.2 Schemas

6.3.1.2.1 Problem Details object (RFC 7807) Schema

The problem schema is the JSON schema of Problem+JSON [RFC7807], used for expressing

in more detail the errors that occurred in an HTTP Response. According to the ruleset, the

schema MUST be used when the response code is either a 4xx or a 5xx and the version

referenced MUST be the one defined in the OpenAPI Document of the ISA² IPS REST API

Core Profile.

The OpenAPI documentation schema for Problem Details object is already defined in the

Error Messages section of the API Core Profile.

6.3.1.2.2 JWS Compact Representation Schema

The JWS compact representation schema defines the string pattern as a regular expression,

denoting the structure a JWS compact token MUST follow to be a valid compact JWS

Representation as per section 7.1 of [RFC7515]. It is used for defining the value of the

message-level signature and of the payload signature.

JwsCompactDetached:

 title: The format for the message-level and payload signature

 description: Defines the string pattern as a regular expression that

 MUST be followed to represent detached JWS compact tokens

 "$id": https://raw.githubusercontent.com/isa2-api4ips/rest-api-

profile/main/api-core-profile/components/schemas/jws-compact-detached.json

 "$schema": https://json-schema.org/draft/2020-12/schema

 type: string

 format: jws-compact-detached

 pattern: ^[A-Za-z0-9_-]+(?:(\\.\\.)[A-Za-z0-9_-]+){1}

6.3.2 OpenAPI Document Instance

The OpenAPI document instance provided in the section below can also be downloaded at

the following link: openapi.yml.

openapi: 3.1.0

https://datatracker.ietf.org/doc/html/rfc7515#section-7.1
https://raw.githubusercontent.com/isa2-api4ips/rest-api-profile/main/api-documentation/openapi.yml

ISA² IPS REST API Profile – Version 1.0

43

info:

 title: ISA² IPS REST API Core Profile - OpenAPI Document Specification

 summary: OpenAPI Document Specification supporting the ISA² IPS REST API

 Core Profile

 description: This specification provides definitions introduced by the

 ISA² IPS REST API Profile

 contact:

 name: eDelivery support office

 url: https://europa.eu/!BPvjcw

 email: EC-EDELIVERY-SUPPORT@ec.europa.eu

 license:

 name: EUPL-1.2 or later

 url: https://eupl.eu/1.2/en/

 version: 1.0.0

 x-edelivery:

 lifecycle:

 maturity: supported

 publisher:

 name: European Commission

 URL: https://ec.europa.eu/

externalDocs:

 description: The ISA² IPS REST API Core Profile

 url: https://joinup.ec.europa.eu/collection/api4dt/document/isa2-ips-rest-

api-profile

components:

 headers:

 Edel-Message-Sig:

 description: The custom header used for carrying the detached

 signature for signing the HTTP Message

 schema:

 $ref: '#/components/schemas/JwsCompactDetached'

 Edel-Payload-Sig:

 description: The custom header used for carrying the detached

 signature for signing the payload

 schema:

 $ref: '#/components/schemas/JwsCompactDetached'

 Deprecation:

 description: Deprecation HTTP Response Header following the

 Internet-Draft "The Deprecation HTTP Header Field"

 (https://datatracker.ietf.org/doc/html/draft-ietf-httpapi-

deprecation-header-01)

 schema:

 $ref: '#/components/schemas/DateValue'

ISA² IPS REST API Profile – Version 1.0

44

 Sunset:

 description: Sunset HTTP Response Header following [RFC8594]. For

 every operation it MUST be set to the date the API is

 to be sunset

 schema:

 $ref: '#/components/schemas/DateValue'

 schemas:

 JwsCompactDetached:

 title: The format for the message-level and payload signature

 description: Defines the string pattern as a regular expression that

 MUST be followed to represent detached JWS compact

 tokens

 "$id": https://raw.githubusercontent.com/isa2-api4ips/rest-api-

profile/main/api-core-profile/components/schemas/jws-compact-detached.json

 "$schema": https://json-schema.org/draft/2020-12/schema

 type: string

 format: jws-compact-detached

 pattern: ^[A-Za-z0-9_-]+(?:(\\.\\.)[A-Za-z0-9_-]+){1}

 DateValue:

 type: string

 format: date

 Problem:

 title: A Problem Details object (RFC 7807) defined by the ISA² IPS

 REST API Core Profile

 description: A Problem Details object (RFC 7807) with ISA² IPS REST

 API extensions, used for signals (responses) to

 messages

 "$id": https://raw.githubusercontent.com/isa2-api4ips/rest-api-

profile/main/api-core-profile/components/schemas/problem.json

 "$schema": https://json-schema.org/draft/2020-12/schema

 type: object

 properties:

 type:

 type: string

 format: uri

 description: An URI reference that identifies the problem type.

 When dereferenced, it SHOULD provide human-readable

 documentation for the problem type (e.g. using

 HTML).

 default: about:blank

 title:

 type: string

 description: A short summary of the problem type, written in

ISA² IPS REST API Profile – Version 1.0

45

 English and readable for engineers (usually not

 suited for non-technical stakeholders and not

 localized).

 example: Service Unavailable

 status:

 type: integer

 format: int32

 description: The HTTP status code generated by the origin server

 for this occurrence of the problem.

 minimum: 200

 exclusiveMaximum: 600

 example: 503

 detail:

 type: string

 description: A human-readable explanation specific to this

 occurrence of the problem.

 instance:

 type: string

 format: uri-reference

 description: A URI reference that identifies the specific

 occurrence of the problem. It may or may not

 yield further information if dereferenced.

 required:

 - status

 - title

 - type

 additionalProperties: true

ISA² IPS REST API Profile – Version 1.0

46

7 MESSAGING API SPECIFICATION

7.1 INTRODUCTION
This API Specification defines a secure, reliable and payload-agnostic protocol for

message exchange using the tools and specifications that are profiled in the API Core Profile,

taking into account the light context constraints. The Messaging API Specification defines

common messaging patterns to enable a messaging protocol following REST API principles.

This section of the ISA² IPS REST API Profile starts by presenting the Message Exchange

Patterns and Recipient Addressing Schemes that are covered by the Messaging API

Specifications before proceeding to the user and signal Message Specification and then the

specification's API Endpoints.

7.2 MESSAGE EXCHANGE PATTERNS
The Message Exchange Patterns define the different ways of executing a business message

exchange between two parties. The patterns define the flows and interactions between the

parties together with the expected outcomes on each interaction step. Following the

paradigms found in current state-of-the-art message exchange protocols, the following

patterns are defined:

7.2.1 Send Message with No Response − Push

The "Send Message with No Response − Push" pattern describes the simplest interaction

between two parties. This pattern uses the push variation, in which the client directly

pushes the message to be transferred to the server, with the following steps:

1. The Client initiates the communication by creating a message containing the
message payload provided by the Submitter (1)

2. The Client submits the message to the receiving Server (2)

3. The Server receives the message from the client and validates it. Upon validation it

sends: (3)

a. An acknowledgement, if the message is valid

b. An error signal, if the message is invalid

4. The Server forwards the message payload to the Receiver (4)

The following response signals are applicable to this message exchange pattern:

• step 3: Message Accepted

• step 3: Message Rejected: Invalid/Duplicate Message ID

• step 3: Message Rejected: Invalid Message Signature

• step 3: Message Rejected: Invalid Addressing

ISA² IPS REST API Profile – Version 1.0

47

• step 3: Message Rejected: Invalid Message Format

Figure 9 Send Message with No Response − Push

7.2.2 Send Message with No Response − Pull

This pattern provides an alternative to the "Send Message with No Response − Push"

pattern. In this pattern, the Receiver sends a pull signal using its Client to a Server holding

a message for delivery. It comprises the following steps:

1. The Submitter creates and stores a message payload on the Server for

asynchronous pulling by the Submitter (1)

2. The Client of the Receiver initiates the communication, on behalf of the Receiver,

and makes a message request by sending a pull signal to the Server of the

Submitter (2)

3. The Server receives the pull signal from the Client and validates it. Upon validation

it sends (3):

a. The message, if the pull signal is valid

b. An error signal, if the pull signal is invalid

ISA² IPS REST API Profile – Version 1.0

48

4. The Client forwards the message payload to the Receiver (4)

The following response signals are applicable to this message exchange pattern:

• step 3: Pull Error: No final recipient configured for the pulling user

• step 3: Pull Error: No Message Found

• step 3: Pull Error: Unauthorized

Figure 10 Send Message with No Response − Pull

7.2.3 Send Message with Synchronous Response

The "Send Message with Synchronous Response" is a typical HTTP Request / Response
message. This pattern expects a complete request-response flow in a single HTTP

connection. The following steps define the pattern interactions:

1. The Client initiates the communication by creating a message containing the

message payload provided by the Requester (1)

2. The Client submits the message to the receiving Server (2)

ISA² IPS REST API Profile – Version 1.0

49

3. The Server receives the message from the Client and validates it. Upon validation:

a. It forwards the message payload to the Responder, if the message is valid

(3)

b. It responds directly with an error signal and skips to step 6, if the message

is not valid (5)

4. The Responder receives the message payload and sends the response payload to

the Server (4)

5. The Server creates and sends a response message as response, synchronously (5)

6. The Client receives the response message, validates it, and forwards the message

payload to the Requester (6)

The following response signals are applicable to this message exchange pattern:

• step 3: Message Rejected: Invalid/Duplicate Message ID

• step 3: Message Rejected: Invalid Message Signature

• step 3: Message Rejected: Invalid Addressing

• step 3: Message Rejected: Invalid Message Format

Figure 11 Send Message with Synchronous Response

ISA² IPS REST API Profile – Version 1.0

50

7.2.4 Send Message with Asynchronous Response − Push and Pull

This message pattern combines the "Send Message With No Response − Push" and "Send

Message With No Response − Pull". The Push pattern is used for submitting the message

and the Pull pattern is then used to provide a response message back. The following steps

define the message pattern:

1. The Client initiates the communication by creating a message containing the

message payload provided by the Requester (1)

2. The Client submits the message to the receiving Server (2)

3. The Server receives the message from the client and validates it. Upon validation it

sends: (3)

a. An acknowledgement, if the message is valid

b. An error signal, if the message is invalid

4. The Server forwards the message payload to the Responder (4)

5. The Responder creates and stores a response payload on the Server for

asynchronous pulling by the Requester (5)

6. The Client initiates the communication, on behalf of the Requester, and makes a

message request by sending a pull signal to the Server (6)

7. The Server receives the pull signal from the client and validates it. Upon validation

it sends (7)

a. The response message, if the pull signal is valid

b. An error signal, if the pull signal is invalid

8. The Client forwards the response payload to the Requester (8)

The following response signals are applicable to this message exchange pattern:

• step 3: Message Accepted

• step 3: Message Rejected: Invalid/Duplicate Message ID

• step 3: Message Rejected: Invalid Message Signature

• step 3: Message Rejected: Invalid Addressing

• step 3: Message Rejected: Invalid Message Format

ISA² IPS REST API Profile – Version 1.0

51

• step 7: Pull Error: No final recipient configured for the pulling user

• step 7: Pull Error: No Message Found

• step 7: Pull Error: Unauthorized

Figure 12 Send Message with Asynchronous Response − Push and Pull

7.2.5 Send Message with Asynchronous Response – Push and Webhook Pull

This message pattern extends the "Send Message with Asynchronous Response − Push and

Pull" with a webhook provided by the client. The webhook is used to signal the Requester

when the response is ready to be retrieved and then the Requester uses the "Send Message

with No Response − Pull" to do so. The following steps define the message pattern:

1. The Client initiates the communication by creating a message containing the

message payload provided by the Requester (1)

2. The Client submits the message to the Server, together with a webhook (2)

3. The Server receives the message from the client and validates it. Upon validation it

sends: (3)

a. An acknowledgement, if the message is valid

ISA² IPS REST API Profile – Version 1.0

52

b. An error signal, if the message is invalid

4. The Server forwards the message payload to the Responder (4)

5. The Responder creates and stores a response payload on the Server for

asynchronous pulling by the Requester (5)

6. The Server sends a signal to the designated webhook URL (6)

7. The Client initiates the communication, on behalf of the Requester, and makes a

message request by sending a pull signal to the Server (7)

8. The Server receives the pull signal from the client and validates it. Upon validation

it sends (8)

a. The response message, if the pull signal is valid

b. An error signal, if the pull signal is invalid

9. The Client forwards the response payload to the Requester (9)

The following response signals are applicable to this message exchange pattern:

• step 3: Message Accepted

• step 3: Message Rejected: Invalid/Duplicate Message ID

• step 3: Message Rejected: Invalid Message Signature

• step 3: Message Rejected: Invalid Addressing

• step 3: Message Rejected: Invalid Message Format

• step 6: Message Response is ready

• step 8: Pull Error: No final recipient configured for the pulling user

• step 8: Pull Error: No Message Found

• step 8: Pull Error: Unauthorized

ISA² IPS REST API Profile – Version 1.0

53

Figure 13 Send Message with Asynchronous Response – Push and Webhook Pull

7.2.6 Send Message with Asynchronous Response – Push and Webhook Push

This message pattern allows a push and push pattern using a provided webhook by the

client. The webhook is used to send a response message to the Requester using the "Send

Message with No Response − Push" pattern. The following steps define the message pattern:

1. The Client initiates the communication by creating a message containing the

message payload provided by the Requester (1)

2. The Client submits the message to the receiving Server together with a webhook

(2)

3. The Server receives the message from the client and validates it. Upon validation it

sends: (3)

a. An acknowledgement, if the message is valid

b. An error signal, if the message is invalid

4. The Server forwards the message payload to the Responder (4)

ISA² IPS REST API Profile – Version 1.0

54

5. The Server initiates the communication by creating a message containing the

response payload provided by the Responder (5)

6. The Server submits the response message to the provided webhook (6)

7. The Webhook Server receives the response message from the Server and validates

it. Upon validation it sends: (7)

a. An acknowledgement, if the response message is valid

b. An error signal, if the response message is invalid

8. The Webhook Server forwards the response payload to the Requester through

the Client (8)

The following response signals are applicable to this message exchange pattern:

• steps 3, 7: Message Accepted

• steps 3, 7: Message Rejected: Invalid/Duplicate Message ID

• steps 3, 7: Message Rejected: Invalid Message Signature

• steps 3, 7: Message Rejected: Invalid Addressing

• steps 3, 7: Message Rejected: Invalid Message Format

ISA² IPS REST API Profile – Version 1.0

55

Figure 14 Send Message with Asynchronous Response – Push and Webhook Push

7.2.7 Send Message with Asynchronous Response – Pull and Push

This pattern provides an alternative to the "Send Message with Asynchronous Response −

Push and Pull" pattern. In this pattern, the Responder sends a pull signal using its Client to

a Server holding a message for delivery and sends a response message using push. It

comprises the following steps:

1. The Requester creates and stores a message payload on the Server for

asynchronous pulling by the Responder (1)

2. The Client initiates the communication, on behalf of the Responder, and makes a

message request by sending a pull signal to the Server (2)

3. The Server receives the pull signal from the Client and validates it. Upon validation

it sends: (3)

a. The message, if the pull signal is valid

b. An error signal, if the pull signal is invalid

4. The Client forwards the message payload to the Responder (4)

ISA² IPS REST API Profile – Version 1.0

56

5. The Client initiates the communication by creating a response message containing

the response payload provided by the Responder (5)

6. The Client submits the response message to the Server (6)

7. The Server receives the response message and validates it. Upon validation it

sends: (7)

a. An acknowledgement, if the response message is valid

b. An error signal, if the response message is invalid

8. The Server forwards the response payload to the Requester(8)

The following response signals are applicable to this message exchange pattern:

• step 3: Pull Error: No final recipient configured for the pulling user

• step 3: Pull Error: No Message Found

• step 3: Pull Error: Unauthorized

• step 7: Message Accepted

• step 7: Message Rejected: Invalid/Duplicate Message ID

• step 7: Message Rejected: Invalid Message Signature

• step 7: Message Rejected: Invalid Addressing

• step 7: Message Rejected: Invalid Message Format

ISA² IPS REST API Profile – Version 1.0

57

Figure 15 Send Message with Asynchronous Response – Pull and Push

7.3 RECIPIENT ADDRESSING SCHEMES
The message exchange patterns describe the exchange between a single HTTP client and a

single secure resource server that implements the messaging endpoints. However, there

could be situations where the message has more than one recipient or even an unknown

number of recipients, acting as a broadcast message. The Messaging API Specification caters

for the following recipient addressing variations:

7.3.1 Single Known Recipient

The Single Known Recipient scheme is the baseline addressing scheme, in which the sender

is aware of the recipient and is explicitly providing it, using the Final-Recipient HTTP

Header Field (see Common Message Fields section).

Figure 16 Single Known Recipient

ISA² IPS REST API Profile – Version 1.0

58

7.3.2 Multiple Known Recipients

The Multiple Known Recipients scheme is an extension of the baseline scheme. This scheme

allows the sender to address multiple known recipients by explicitly listing their identifiers

in the Final-Recipient HTTP Header Field (see Common Message Fields section).

Figure 17 Multiple Known Recipients

7.3.3 Unknown Recipients

The Unknown Recipients scheme is a variation of the baseline scheme. When this scheme is

used, the sender is not aware of the recipient(s) and thus cannot provide the proper

identifiers for them, but can use an abstract identifier (e.g., a role, a group, etc.) that can be

resolved by the resource server to one or more concrete recipients.

Figure 18 Unknown Recipients

7.4 MESSAGE SPECIFICATION

7.4.1 Common Message Fields

The messaging API defines a set of metadata to be reused in the endpoint definitions of the

APIs. This metadata carries the necessary information for secure and reliable messaging.

Each endpoint defined in the API Endpoints section uses a subset of the metadata defined

in this section. Table 1 provides a complete list of the metadata used in the Messaging API

ISA² IPS REST API Profile – Version 1.0

59

Specification. Whether a field is mandatory or optional is defined alongside each specific

endpoint in the API Endpoints section.

Metadata Description Format Location

Original-

Sender

A string identifying the Original Sender String HTTP

Field

Original-

Sender-Token

The ID Token proving the identity of the

Original Sender

JWT or OIDC

Token

HTTP

Field

Final-Recipient A string identifying the Final Recipient String HTTP

Field

Timestamp The timestamp of the message generation Date HTTP

Field

Edel-Message-

Sig

The detached JAdES signature signing the

message to be sent

JWT

Compact

HTTP

Field

Edel-Payload-

Sig

The detached JAdES signature signing the

payload to be sent

JWT

Compact

HTTP

Field

Response-

Webhook

The URL to which the server will send the

response

URL HTTP

Field

Signal-

Webhook

The URL to which the server will send the signal URL HTTP

Field

Message-Id The unique identifier of the response message

received or the unique identifier of the signal

message received

String HTTP

Field

Service The service of the response message received String HTTP

Field

Action The action related to the service of the response

message received

String HTTP

Field

messageId The unique identifier of the message being

submitted

String Resource

URL

service The service the message is submitted to String Resource

URL

action The action related to the service the message is

submitted to

String Resource

URL

rMessageId The unique identifier of the response message

being submitted

String Resource

URL

rService The service under which the response message

should be submitted

String Resource

URL

rAction The action of the service under which the

response message should be submitted

String Resource

URL

ISA² IPS REST API Profile – Version 1.0

60

Table 1 Messaging API Metadata

7.4.1.1 Original-Sender

The Original Sender is the entity that initiates the submission of the message. The value

provided in this field MUST identify a single entity. The representation of the original sender

is out of scope of the current specification.

The API Endpoints section documents under what conditions the field should be used. The

header field MUST not appear more than once in an HTTP message; if an HTTP message

contains multiple Original-Sender header fields, the receiver MUST consider the HTTP

message invalid. An invalid HTTP request message MUST be rejected using the "Invalid

Message Format" signal message (see Signal Message section).

The information conveyed through this field applies only to the HTTP message that contains

it.

Intermediaries MUST NOT modify the field's value and the field name MUST NOT be listed

in the Connection header field.

The information provided in the field is meant to identify the sender of the message,

therefore data protection considerations apply.

7.4.1.2 Original-Sender-Token

The Original Sender represents the authenticated entity acting as the user who sends the

message using the client. Following the API Core Profile, the original sender MUST be

identified either via an OpenID Connect Token or via a signed JSON Web Token, any of which

is represented as a Compact JWT token. This token MUST be carried under the Original-

Sender-Token HTTP Field.

The API Endpoints section documents under what conditions the field should be used. The

header field MUST not appear more than once in an HTTP message; if an HTTP message

contains multiple Original-Sender-Token header fields, the receiver MUST consider the

HTTP message invalid. An invalid HTTP request message MUST be rejected using the

"Invalid Message Format" signal message (see Signal Message section).

The information conveyed through this field applies only to the HTTP message that contains

it.

Intermediaries MUST NOT modify the field's value and the field name MUST NOT be listed

in the Connection header field.

The information provided in the field is meant to identify the sender of the message,

therefore data protection considerations apply.

7.4.1.3 Final-Recipient

The Final Recipient is(are) the entity(ies) to which the message is addressed. A single

identifier or multiple identifiers can be provided as the value for this field, as detailed in the

Recipient Addressing Schemes section. If multiple identifiers are present, they MUST be

separated by commas. The representation of the final recipient is out of scope of the current

specification.

The API Endpoints section documents under what conditions the field should be used. The

header field MUST not appear more than once in an HTTP message; if an HTTP message

contains multiple Final-Recipient header fields, the receiver MUST consider the HTTP

ISA² IPS REST API Profile – Version 1.0

61

message invalid. An invalid HTTP request message MUST be rejected using the "Invalid

Message Format" signal message (see Signal Message section).

The information conveyed through this field applies only to the HTTP message that contains

it.

Intermediaries MUST NOT modify the field's value and the field name MUST NOT be listed

in the Connection header field.

The information provided in the field is meant to identify the receiver(s) of the message,

therefore data protection considerations apply.

7.4.1.4 MessageId

The messageId is the unique identifier of the message submitted. It MUST be defined by the

client. It is used for reliable messaging for guaranteeing the at-most-once message

submission (no duplicate message-ids are allowed by the server implementing the API).

7.4.1.5 Timestamp

The Timestamp is the date (and optionally the time) at which the message was generated,

encoded as specified by [RFC3339]. It is provided by the client and verified by the server.

Notes:

• refer also to the erratum id 5624 of [RFC3339] that clarifies that using date-time is

not mandatory; other choices such as full-date or partial-time are equally allowed.

• clock skew requirements are out of scope of the current specification, but

implementers are encouraged to define them as applicable to their specific domain.

The API Endpoints section documents under what conditions the field should be used. The

header field MUST not appear more than once in an HTTP message. If an HTTP message

contains multiple Timestamp header fields, the receiver MUST consider the HTTP message

invalid. An invalid HTTP request message MUST be rejected using the "Invalid Message

Format" signal message (see Signal Message section).

The information conveyed through this field applies only to the HTTP message that contains

it.

Intermediaries MUST NOT modify the field's value and the field name MUST NOT be listed

in the Connection header field.

No special security considerations apply to the information provided in the field.

7.4.1.6 Edel-Message-Sig

The Edel-Message-Sig carries the signature of the HTTP Message following the API Core

Profile on Message-Level Security. Following the light context constraints, the signature is

optional for the client messages, but is RECOMMENDED for server messages.

The API Endpoints section documents under what conditions the field should be used. The

header field MUST not appear more than once in an HTTP message. If an HTTP message

contains multiple Edel-Message-Sig header fields, the receiver MUST consider the HTTP

message invalid. An invalid HTTP request message MUST be rejected using the "Invalid

Message Format" signal message (see Signal Message section).

https://www.rfc-editor.org/errata/eid5624

ISA² IPS REST API Profile – Version 1.0

62

The information conveyed through this field applies only to the HTTP message that contains

it.

Intermediaries MUST NOT modify the field's value and the field name MUST NOT be listed

in the Connection header field.

No special security considerations apply to the information provided in the field.

7.4.1.7 Edel-Payload-Sig

The Edel-Payload-Sig carries the signature of a subpart of the Multipart message (see

User Message section) following the API Core Profile on Payload Security.

The API Endpoints section documents under what conditions the field should be used. The

header field MUST not appear among the global header fields of the HTTP message and

MUST not appear more than once among the header fields of each HTTP message subpart.

Otherwise the receiver MUST consider the HTTP message invalid. An invalid HTTP request

message MUST be rejected using the "Invalid Message Format" signal message (see Signal

Message section).

The information conveyed through this field applies only to the HTTP message subpart that

contains it.

Intermediaries MUST NOT modify the field's value and the field name MUST NOT be listed

in the Connection header field.

No special security considerations apply to the information provided in the field.

7.4.1.8 Service

The service metadata defines the service under which the message should be submitted. It

is combined with the action metadata to provide a complete domain-level message target.

The service metadata MUST be a URL Safe string.

7.4.1.9 Action

The action metadata defines the action of the service under which the message should be

submitted. It is combined with the service metadata to provide a complete domain-level

target of the message. The action metadata MUST be a URL Safe string.

7.4.1.10 RMessageId

The rMessageId is the identifier of the response message being submitted. It MUST be

generated by the client submitting the response message.

7.4.1.11 Message-Id

When the rMessageId URL parameter cannot be used for providing the identifier of the

response message, e.g. in synchronous responses, the Message-Id header field can be used

instead. It identifies either a response or a signal message received synchronously.

The API Endpoints section documents under what conditions the field should be used. The

header field MUST not appear more than once in an HTTP response message. If an HTTP

response message contains multiple Message-Id header fields, the receiver MUST consider

the HTTP response message invalid.

The information conveyed through this field applies only to the HTTP message that contains

it.

ISA² IPS REST API Profile – Version 1.0

63

Intermediaries MUST NOT modify the field's value and the field name MUST NOT be listed

in the Connection header field.

No special security considerations apply to the information provided in the field.

7.4.1.12 RService

The response service metadata defines the service under which the response message

should be submitted. It is combined with the response action metadata to provide a

complete domain-level message target. The response service metadata MUST be a URL Safe

string.

7.4.1.13 Service

When, in synchronous responses, the rService URL parameter cannot be used for providing

the service of the response message, the Service header field can be used instead for the

purpose. It is combined with the action from the Action header field to provide a complete

domain-level message target.

The API Endpoints section documents under what conditions the field should be used. The

header field MUST not appear more than once in an HTTP response message. If an HTTP

response message contains multiple Service header fields, the receiver MUST consider the

HTTP response message invalid.

The information conveyed through this field applies only to the HTTP message that contains

it.

Intermediaries MUST NOT modify the field's value and the field name MUST NOT be listed

in the Connection header field.

No special security considerations apply to the information provided in the field.

7.4.1.14 RAction

The response action metadata defines the action of the service under which the response

message should be submitted. It is combined with the response service metadata to

provide a complete domain-level target of the response message. The response action

metadata MUST be a URL Safe string.

7.4.1.15 Action

When, in synchronous responses, the rAction URL parameter cannot be used for providing

the action of the service of the response message, the Action header field can be used instead

for the purpose. It is combined with the service from the Service header field to provide a

complete domain-level message target.

The API Endpoints section documents under what conditions the field should be used. The

header field MUST not appear more than once in an HTTP response message. If an HTTP

response message contains multiple Action header fields, the receiver MUST consider the

HTTP response message invalid.

The information conveyed through this field applies only to the HTTP message that contains

it.

Intermediaries MUST NOT modify the field's value and the field name MUST NOT be listed

in the Connection header field.

No special security considerations apply to the information provided in the field.

ISA² IPS REST API Profile – Version 1.0

64

7.4.1.16 Response-Webhook

The Response-Webhook provides the callback URL that the server MUST use for sending a

response. It is required when implementing the "Send Message with Asynchronous

Response – Push and Webhook Push" exchange pattern.

The API Endpoints section documents under what conditions the field should be used. The

header field MUST not appear more than once in an HTTP request message. If an HTTP

request message contains multiple Response-Webhook header fields, the receiver MUST

consider the HTTP request message invalid. An invalid HTTP request message MUST be

rejected using the "Invalid Message Format" signal message (see Signal Message section).

The information conveyed through this field applies only to the HTTP message that contains

it.

Intermediaries MUST NOT modify the field's value and the field name MUST NOT be listed

in the Connection header field.

No special security considerations apply to the information provided in the field.

7.4.1.17 Signal-Webhook

The Signal-Webhook provides the callback URL that the server MUST use for sending a

signal back. It is required when implementing the "Send Message with Asynchronous

Response – Push and Webhook Pull" exchange pattern.

The API Endpoints section documents under what conditions the field should be used. The

header field MUST not appear more than once in an HTTP request message. If an HTTP

request message contains multiple Signal-Webhook header fields, the receiver MUST

consider the HTTP request message invalid. An invalid HTTP request message MUST be

rejected using the "Invalid Message Format" signal message (see Signal Message section).

The information conveyed through this field applies only to the HTTP message that contains

it.

Intermediaries MUST NOT modify the field's value and the field name MUST NOT be listed

in the Connection header field.

No special security considerations apply to the information provided in the field.

7.4.2 User Message

The User Message is a payload-agnostic message container that contains the common

message fields that are part of the HTTP Header and payload-specific metadata for each

included payload. Following the API Core Profile, its structure MUST always be a

multipart/mixed, containing at least one multipart subpart as payload (see Figure 19: User

Message High-Level Structure).

ISA² IPS REST API Profile – Version 1.0

65

Figure 19 User Message High-Level Structure

The User Message structure follows the structure depicted in Figure 19: User Message High-

Level Structure. The Common Metadata Fields are provided in the Global HTTP Fields of the

Multipart Payload, as described in the Common Message Fields section of the profile.

Each User Message consists of one or more multipart subparts. Each subpart represents a

payload. Each payload has its own payload metadata that are specific to this payload:

• Payload content-type

• Payload content-length

• Payload content-disposition

• Payload signature (Edel-Payload-Sig)

These payload metadata are represented as subpart HTTP header fields, with the payload

itself being the subpart body.

The payload signature is expressed using the JAdES detached profile, as profiled in the API

Core Profile. The following snippet provides an example of a User Message containing two

payloads:

ISA² IPS REST API Profile – Version 1.0

66

POST /my-service/my-action/dde12f67-c391-4851-8fa2-c07dd8532efd HTTP/1.1

Content-Type: multipart/mixed; boundary=REST-API-BOUNDARY

Content-Length: 5142342

Authorization: Bearer

eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4gRG9lIiwiaWF0IjoxNTE2MjM5MDIyfQ

Original-Sender: 1111:123456789

Original-Sender-Token:

eyJhbGciOiJIUzINiIsnRI6IkpXVCJ9.eyJzdWIiOiIxM0NTY3ODkwIiwibmIiwiaWF0IoxNTE2MjM5MDIyf

Q.SflKxwRJSMeKKF2QT4fwpMePOk6yJV_adQssw5c

Final-Recipient: 9999::333222111

Timestamp: 2021-03-11T07:00:27Z

Digest: sha-

256=eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4gRG9lIiwiaWF0IjoxNTE2MjM5MDIyfQ=

Edel-Message-Sig:

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9..SflKxwRJSMeKKF2QT4fwpMeJf36POk6yJV_adQssw5c

--REST-API-BOUNDARY

Content-Disposition: name="datafile1"; filename="r.pdf"

Content-Type: application/pdf

Edel-Payload-Sig:

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9..SflKxwRJSMeKKF2QT4fwpMeJf36POk6yJV_adQssw5c

R0lGODlhIAAgAPcAAP///+/v7/f39+/n5/fv7//39/fn597OzufW1tbGxs69vffe3u/W1salpZQQ

EIQYEJwQCJQYCJwYCM6clL2Ee5wpGIwhEK0YANatpdalnHMYCKUhCJQYAKUYAM6Ec5QhCJwhCPfW

zu/Oxta1rb17a6UhAK0hAPe9rb2Ec7V7a71rUpwpCL0xCJwhAOfOxta9tcatpdallM6cjMaUhK1C

IZwxELU5EK0xCLUxCN61pcacjK1rUrVaOaVKKZxCIZwxCKUxCL05CLUxAM6llO+1nMZzUr1rSrVS

KaVCGK1CGLVCEJQxCK05CLU5CIwpAKUxAK0xAM69tffWxrVrSrVaMbVKGMZKEL1CCLU5AP/v597O

xufGtcallNaljLWEa96ce9aUc717Wq1aMcZjMbVaKbVSIa1KGL1SGJw5CK1CCLVCCMZKCM5KCMZC

APfn3tbGvc57Ss5aGMZSENZaEL1KCM5SCLVCAMZKAPfezvfOte/GrdatlN6cc9aEUr1rOc5jIdZj

GL1SEM5aELVKCMZSCNZaCL1KAOfOvc57Qs5jGNZjEM5aCMZSAN5aAO/OtefGrcZjGM5jEN5rELVS

--REST-API-BOUNDARY

Content-Disposition: name="datafile2"; filename="g.gif"

Content-Type: image/gif

Edel-Payload-Sig:

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9..SflKxwRJSMeKKF2QT4fwpMeJf36POk6yJV_adQssw5c

GIF87a.............,...........D..;

--REST-API-BOUNDARY--

7.4.3 Signal Message

Signal messages are messages representing confirmations of message reception, an error

state after message submission or a notification that a message response is ready to be

retrieved. Use of signal messages is required and depends on the messaging pattern being

implemented.

Contrary to User Messages, Signal messages MUST NOT use a multipart media type for

structuring the HTTP request or response.

Signal messages derive and further extend Problem+JSON [RFC7807] to contain messaging-

specific domain attributes. These attributes are:

• instance: The instance attribute uses the relative URI structure to provide the

message metadata like the service, action and message UUID for reference.

• digest: The message digest of the received HTTP message for which the signal was

created. Digest MUST be formatted following [RFC3230] (and [DRAFT-IETF-HTTP-

DGST-HDR] that will obsolete [RFC3230]). Used in combination with the signature,

it provides non-repudiable evidence of reception.

The following block provides the JSON Schema for the Signal Message:

ISA² IPS REST API Profile – Version 1.0

67

{

 "title": "A Problem Details object (RFC 7807) defined by the ISA² IPS\

 REST API Core Profile",

 "description": "A Problem Details object (RFC 7807) with ISA² IPS REST\

 API extensions, used for signals (responses) to\

 messages",

 "$id": "https://raw.githubusercontent.com/isa2-api4ips/rest-api-

profile/main/messaging-api-specification/components/schemas/signal-

message.json",

 "$schema": "https://json-schema.org/draft/2020-12/schema",

 "type": "object",

 "properties": {

 "type": {

 "type": "string",

 "format": "uri",

 "description": "An URI reference that identifies the problem type.\

 When dereferenced, it SHOULD provide human-readable\

 documentation for the problem type (e.g. using\

 HTML).",

 "example": "https://github.com/isa2-api4ips/rest-api-

profile/blob/main/messaging-api-specification/signal.md#message-accepted"

 },

 "title": {

 "type": "string",

 "description": "A short summary of the problem type, written in\

 English and readable for engineers (usually not\

 suited for non technical stakeholders and not\

 localized).",

 "example": "Message Accepted"

 },

 "status": {

 "type": "integer",

 "format": "int32",

 "description": "The HTTP status code generated by the origin server\

 for this occurrence of the problem.",

 "minimum": 200,

 "exclusiveMaximum": 600,

 "example": 202

 },

 "detail": {

 "type": "string",

 "description": "A human-readable explanation specific to this\

 occurrence of the problem."

 },

 "instance": {

 "type": "string",

 "format": "uri-reference",

ISA² IPS REST API Profile – Version 1.0

68

 "description": "A URI reference that identifies the specific\

 occurrence of the problem. It may or may not yield\

 further information if dereferenced."

 },

 "digest": {

 "type": "string",

 "description": "The digest of the received message using the\

 notation proposed in 'Digest Fields'\

 (https://datatracker.ietf.org/doc/html/draft-ietf-

httpbis-digest-headers).",

 "example": "sha-256=4REjxQ4yrqUVicfSKYNO/cF9zNj5ANbzgDZt3/h3Qxo=,"

 }

 },

 "required": ["title", "type", "status", "instance"],

 "additionalProperties": false

}

The Messaging API Specification mandates the use of Problem+JSON to send back error

responses. It further mandates the same for signalling a successful accepted submission by

a server as well as a readiness of a message response. To this end, it extends the scope of

[RFC7807], as it uses the same schema. The precision definition of how it should be used is

defined in the following section.

The following block provides an example of a successful Signal Message (Message Accepted)

sent as an acknowledgement:

HTTP/1.1 202 Accepted

Content-Type: application/problem+json; charset=utf-8

Message-Id: 1814964a-5a1c-4c4b-839f-c4629be5db0c

Timestamp: 2021-03-11T07:00:27Z

Digest: sha-256=X48E9qOokqqrvdts8nOJRJN3OWDUoyWxBf7kbu9DBPE=

Edel-Message-Sig:

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9..SflKxwRJSMeKKF2QT4fwpMeJf36POk6yJV_a

dQssw5c

{

 "type": "https://github.com/isa2-api4ips/rest-api-

profile/blob/main/messaging-api-specification/signal.md#message-accepted",

 "title": "Message Accepted",

 "status": 202,

 "instance": "/my-service/my-action/dde12f67-c391-4851-8fa2-

c07dd8532efd",

 "digest": "sha-

256=eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4gRG9lIiwiaWF0IjoxNTE2MjM5MD

IyfQ"

}

7.4.3.1 Predefined Signals

The following pre-defined signals MUST be supported by both the client and the server

implementing the Messaging API Specification:

ISA² IPS REST API Profile – Version 1.0

69

No Signal Title Signal

Status

(code)

Signal Type Signal

Description

1 Message

Accepted

202 https://github.com/isa2-api4ips/rest-api-

profile/blob/main/messaging-api-

specification/signal.md#message-accepted

Sent when the

message is

properly

validated. It may

include a status

monitor that can

provide the user

with an estimate

of when the

request will be

fulfilled (see

[RFC7231])

2 Validation

Failed

400 https://github.com/isa2-api4ips/rest-api-

profile/blob/main/messaging-api-

specification/signal.md#message-validation-

failed

Sent when the

message fails the

validation

process

3 Invalid or
Duplicate

Message ID

400 https://github.com/isa2-api4ips/rest-api-
profile/blob/main/messaging-api-

specification/signal.md#invalid-message-id

Sent when the
MessageId is not

valid

4 Invalid

Message

Signature

400 https://github.com/isa2-api4ips/rest-api-

profile/blob/main/messaging-api-

specification/signal.md#invalid-message-

signature

Sent when the

message

signature cannot

be verified

5 Invalid

Addressing

400 https://github.com/isa2-api4ips/rest-api-

profile/blob/main/messaging-api-

specification/signal.md#invalid-addressing

Sent when the

Original Sender

or Final

Recipient(s)

cannot be

resolved

6 Invalid

Message

Format

400 https://github.com/isa2-api4ips/rest-api-

profile/blob/main/messaging-api-

specification/signal.md#invalid-format

Sent when the

message format

does not adhere

to the

specification

7 Pull Error:

No final

recipient

configured for

the pulling

user

400 https://github.com/isa2-api4ips/rest-api-

profile/blob/main/messaging-api-

specification/signal.md#pull/no-final-

recipient

Sent when the

server cannot

resolve/match

the pulling user

to a final

recipient

ISA² IPS REST API Profile – Version 1.0

70

8 Pull Error:

No Message

Found

404 https://github.com/isa2-api4ips/rest-api-

profile/blob/main/messaging-api-

specification/signal.md#pull/no-message-

found

Sent when no

message is found

that maps to the

pull request

9 Pull Error:

Unauthorized

401 https://github.com/isa2-api4ips/rest-api-

profile/blob/main/messaging-api-

specification/signal.md#pull/unauthorized

Sent when the

pull request is

unauthorized

10 Message

Response is

ready

201 https://github.com/isa2-api4ips/rest-api-

profile/blob/main/messaging-api-

specification/signal.md#message-ready

An HTTP Request

following

[RFC7807] MUST

be sent when a

message

response is ready

to be retrieved

For signals number 1-9, the HTTP Response code MUST match the Signal Status (code)

defined in the above table.

The following pre-defined signal SHOULD be supported by servers implementing the

Messaging API Specification for 500 server errors that do not affect the generation,

signature and submission of such a signal:

11 Server Error 500 https://github.com/isa2-api4ips/rest-api-

profile/blob/main/messaging-api-

specification/signal.md#server-error

Sent when a

server error

occurred that

does not affect

the signalling

process

Otherwise a simple 500 HTTP Response code will be returned.

7.4.3.2 Signature profile for User and Signal Messages

The Messaging API Specification follows the the API Core Profile on Message-Level Security.

The Messaging API Specification adds the following headers in the calculation of the

signature, by mandating that they MUST be added in the pars array of the SigD object of

the JAdES detached signature if they exist in the message:

• Original-Sender

• Original-Sender-Token

• Final-Recipient

• Message-Id

• Service

• Action

• Timestamp

ISA² IPS REST API Profile – Version 1.0

71

7.4.4 Message Reference

The Message Reference is a response provided by the resource server when multiple

messages could be retrieved from an API operation, e.g. getting all messages for a specific

service or for a specific combination of service and action. The Message Reference follows

the following JSON Schema:

{

 "title": "A Message Reference object defined by the ISA² IPS REST API\

 Messaging API Specification",

 "description": "A Message Reference object to be used when multiple\

 messages could be retrieved from an API operation",

 "$id": "https://raw.githubusercontent.com/isa2-api4ips/rest-api-

profile/main/messaging-api-specification/components/schemas/message-reference-

list.json",

 "$schema": "https://json-schema.org/draft/2020-12/schema",

 "type": "object",

 "required": [

 "MessageReferenceList"

],

 "properties": {

 "MessageReferenceList": {

 "type": "array",

 "items": {

 "title": "Items",

 "type": "object",

 "required": [

 "service",

 "action",

 "messageId",

 "href"

],

 "properties": {

 "service": {

 "description": "The service the message belongs to",

 "type": "string"

 },

 "action": {

 "description": "The action the message belongs to",

 "type": "string"

 },

 "messageId": {

 "description": "The unique identifier of a message",

 "type": "string",

 "format": "uuid"

 },

 "href": {

 "description": "The direct link for getting the specific\

ISA² IPS REST API Profile – Version 1.0

72

 message",

 "type": "string",

 "format": "uri-reference"

 }

 }

 }

 }

 }

}

The following block shows an example of a Message Reference:

{

 "MessageReferenceList": [

 {

 "service": "my-service",

 "action": "my-action",

 "messageId": "dde12f67-c391-4851-8fa2-c07dd8532efd",

 "href": "/my-service/my-action/dde12f67-c391-4851-8fa2-c07dd8532efd"

 },

 {

 "service": "my-service",

 "action": "my-action",

 "messageId": "68258b84-7806-4446-971f-3c8ddeb7b093",

 "href": "/my-service/my-action/68258b84-7806-4446-971f-3c8ddeb7b093"

 }

]

}

7.5 API ENDPOINTS
The profile makes use of the semantics of resource patterns, following the REST API Design

principles as described in the API Core Profile, using conformant HTTP Methods, HTTP

Request and Response Fields, and URL fields for the definition of the Submission (Push)

endpoints and Request for Reception (Pull) endpoints of the Messaging API Specification. It

defines three groups of API endpoints, each containing a set of endpoints for a specific

purpose:

• Message Submission Endpoints: used for submitting messages from the client to

the server. It consists of:

o Message Submission Endpoint: used for submitting asynchronous

messages.

o Message Submission with Synchronous Response Message Endpoint:

used for submitting messages that expect a synchronous response.

• Response Submission Endpoints: used for submitting a message which is a

response to a message. It consists of:

ISA² IPS REST API Profile – Version 1.0

73

o Response Message Submission Endpoint: used for submitting

asynchronous response messages.

o Webhook Response Message Submission: used for submitting

asynchronous response messages to a webhook server.

o Webhook Signal Submission Endpoint: used for signalling that a response

message is available.

• Message Pull Endpoints: used for pulling messages from a server asynchronously.

It consists of:

o Get Message Reference List Endpoint: used for getting a listing of

retrievable messages, using references.

o Get Message Endpoint: used for retrieving a message from a server.

• Response Message Pull Endpoints: used for pulling messages from a server

asynchronously, that are responses to a previously sent message. It consists of:

o Get Response Message Reference List Endpoint: used for getting a listing

of retrievable response messages, using references.

o Get Response Message Endpoint: used for retrieving a response message

from the server.

ISA² IPS REST API Profile – Version 1.0

74

The profile defines all endpoints as optional, as which endpoints are needed is completely dependent on the Message Exchange Pattern being

implemented. Each Message Exchange Pattern as defined in the Message Exchange Patterns section can be fully implemented only when specific

endpoints are implemented either by the message receiver or the message response receiver. The following table shows a mapping between the

Message Exchange Patterns and the endpoint(s) they require. Table cells indicate the role of the party, with respect to the initial message, which

needs to provide the endpoint:

Mapping: Message

Exchange Patterns to

Endpoints

Message

Submission

Message Submission

with Sync Response

Message

Response

Message

Submission

Webhook

Response Message

Submission

Webhook Signal

Submission

Get Message

Reference List

Get

Message

Get Response

Message

Reference List

Get

Response

Message

Send Message with No

Response – Push

Message

Receiver

Send Message with No

Response – Pull

Message

Sender

Message

Sender

Send Message with

Synchronous Response
 Message Receiver

Send Message with

Asynchronous Response –

Push and Pull

Message

Receiver
 Message Receiver

Message

Receiver

Send Message with

Asynchronous Response –

Push and Webhook Pull

Message

Receiver
 Message Sender Message Receiver

Message

Receiver

Send Message with

Asynchronous Response –

Push and Webhook Push

Message

Receiver
 Message Sender

Send Message with

Asynchronous Response –

Pull and Push

 Message Sender
Message

Sender

Message

Sender

Table 2 Mapping: Message Exchange Patterns to Endpoints. Table cells indicate the role of the party, with respect to the initial message, which needs to provide the endpoint.

ISA² IPS REST API Profile – Version 1.0

75

7.5.1 Message Submission Endpoints

7.5.1.1 Authorisation of HTTP Requests

The server responsible for implementing the endpoints defined in this section MUST ensure that the (OAuth) access token used to authorize the

message submission matches the OpenID Connect Token of the JSON Web Token received in the Original-Sender-Token field of the submitted message.

The approach to ensure the matching is out of scope of this specification. One option would be to compare the identity from a JWT-type access token

to that included in the aforementioned Original-Sender-Token field.

7.5.1.2 Message Submission Endpoint

The Message Submission endpoint is the main endpoint of the Messaging API. It provides the endpoint to which a client sends the message, as created

by the original sender. Table 3 provides an overview of the HTTP Multipart body and fields defined and required for the implementation of this

endpoint.

Resource Attributes Resource Value

HTTP Method POST

URL Pattern /messaging/{service}/{action}/{messageId}

HTTP Body (Content-

Type)

multipart/mixed containing the boundary directive

Successful HTTP

Response (Content-

Type)

application/problem+json

Error HTTP Response

(Content-Type)

application/problem+json

URL Fields Resource Value Format Optionality

service A representation of the service the message is submitted to URL Safe String Mandatory

ISA² IPS REST API Profile – Version 1.0

76

action A representation of the action related to the service the message is submitted to URL Safe String Mandatory

messageId The identifier of the message being submitted. It MUST be generated by the client

submitting the message

UUID v4 String Mandatory

Global HTTP Request

Header Fields

Resource Value Format Optionality

Original-Sender The representation of the Original Sender String Mandatory

Original-Sender-

Token

The ID Token proving the identity of the Original Sender Compact JWT Mandatory

Final-Recipient The representation of the Final Recipient(s) String Mandatory

Timestamp The timestamp of the message generation Date Mandatory

Edel-Message-Sig The detached JAdES signature signing the sent message JAdES Compliant

Compact Detached

JWS

Optional

Response-Webhook The URL to which the Server will send the response. The URL MUST include the URI

resource fragment up to and including the response resource path. The rService,

rAction and rMessageId MUST be added by the Server.

URL Optional

Signal-Webhook The URL to which the Server will send the signal that the response is ready. The URL

MUST include the complete URL up to and including the signal resource path.

URL Optional

Multipart HTTP

Request Subpart

Header Fields

Resource Value Format Optionality

ISA² IPS REST API Profile – Version 1.0

77

Edel-Payload-Sig The detached JAdES signature signing the subpart of the multipart of the sent message JAdES Compliant

Compact Detached

JWS

Optional

Content-Disposition The Content-Disposition header, declaring the subpart as an attachment fixed value:

'Attachment'

Mandatory

Content-Type The content type of the subpart of the multipart message One of IANA Media

Types

Mandatory

HTTP Response

Header Fields

Resource Value Format Optionality

Message-Id The identifier of the signal message UUID v4 String Mandatory

Timestamp The timestamp of the message generation Date Mandatory

Edel-Message-Sig The detached JAdES signature signing the signal message JAdES Compliant

Compact Detached

JWS

Optional

Table 3 Field and attribute overview of the Message Submission endpoint

The endpoint implements the message submission which is part of the several "Message Submission with No Response" and the "Message Submission

with Asynchronous Response" message exchange patterns. It expects a multipart message, following the User Message section, and sends back a

response following the Problem+JSON json schema, as defined in the Signal Message section.

The URL Fields service and action MUST be provided at design time by the receiving server, through its OpenAPI Document. The messageId MUST

be kept as a URL Field that will be provided by the client submitting the message.

The Client MUST provide the Original-Sender and the Original-Sender-Token HTTP Header Fields expressed as a compact JWT which can be either an

OpenID Connect Token or a simple JSON Web Token signed by a trusted certificate. When the token is an OpenID Connect Token, it must be provided

by the OpenID Connect Identity Provider stated in the OpenAPI Document of the Messaging API. It MUST also provide the final recipient of the message

https://www.iana.org/assignments/media-types/media-types.xhtml
https://www.iana.org/assignments/media-types/media-types.xhtml

ISA² IPS REST API Profile – Version 1.0

78

in the Final-Recipient HTTP Header Field. The Final-Recipient Header MUST follow the Recipient Addressing Schemes section. The structure and

format of the final recipient are domain-specific and out of scope of this specification.

The Client, when possible, MAY provide one or more signatures following the API Core Profile specification on the Message And Payload Level Security,

creating a JAdES Compliant Compact Detached JWS.

The Server responds with a Signal Message as defined in the Signal Message section, both for successful transmission and error transmission.

7.5.1.3 Message Submission with Synchronous Response Message Endpoint

The Message Submission with Synchronous Response Message endpoint is the synchronous alternative to the main endpoint of the Messaging

API. It provides the endpoint to which a client sends the message, as created by the original sender, and for which a synchronous response message is

expected. Table 4 provides an overview of the HTTP Multipart body and fields, for both the request and the response, defined and required for the

implementation of this endpoint.

Resource Attributes Resource Value

HTTP Method POST

URL Pattern /messaging/{service}/{action}/{messageId}/sync

HTTP Body (Content-Type) multipart/mixed containing the boundary directive

Successful HTTP Response

(Content-Type)

multipart/mixed containing the boundary directive

Error HTTP Response

(Content-Type)

application/problem+json

URL Fields Resource Value Format Optionality

service A representation of the service the message is submitted to URL Safe String Mandatory

action A representation of the action related to the service the message is

submitted to

URL Safe String Mandatory

ISA² IPS REST API Profile – Version 1.0

79

messageId The identifier of the message being submitted. It MUST be generated

by the client submitting the message

UUID v4 String Mandatory

Global HTTP Request Header

Fields

Resource Value Format Optionality

Original-Sender The representation of the Original Sender String Mandatory

Original-Sender-Token The ID Token proving the identity of the Original Sender Compact JWT Mandatory

Final-Recipient The representation of the Final Recipient(s) String Mandatory

Timestamp The timestamp of the message generation Date Mandatory

Edel-Message-Sig The detached JAdES signature signing the sent message JAdES Compliant Compact

Detached JWS

Optional

Multipart HTTP Request

Subpart Header Fields

Resource Value Format Optionality

Edel-Payload-Sig The detached JAdES signature signing the subpart of the multipart of

the sent message

JAdES Compliant Compact

Detached JWS

Optional

Content-Disposition The Content-Disposition header, declaring the subpart as an

attachment

fixed value: 'Attachment' Mandatory

Content-Type The content type of the subpart of the multipart message One of IANA Media Types Mandatory

HTTP Response Header Fields Resource Value Format Optionality

Original-Sender The representation of the Original Sender String Mandatory

Original-Sender-Token The ID Token proving the identity of the Original Sender Compact JWT Mandatory

https://www.iana.org/assignments/media-types/media-types.xhtml

ISA² IPS REST API Profile – Version 1.0

80

Final-Recipient The representation of the Final Recipient(s) String Mandatory

Message-Id The identifier of the response message UUID v4 String Mandatory

Service A representation of the service the response message String Mandatory

Action A representation of the action related to the service of the response

message

String Mandatory

Timestamp The timestamp of the message generation Date Mandatory

Edel-Message-Sig The detached JAdES signature signing the sent message JAdES Compliant Compact

Detached JWS

Optional

Multipart HTTP Response

Subpart Header Fields

Resource Value Format Optionality

Edel-Payload-Sig The detached JAdES signature signing the subpart of the multipart of

the response message

JAdES Compliant Compact

Detached JWS

Optional

Content-Disposition The Content-Disposition header, declaring the subpart as an

attachment

fixed value: 'Attachment' Mandatory

Content-Type The content type of the subpart of the multipart message One of IANA Media Types Mandatory

Table 4 Field and attribute overview of the Message Submission with Synchronous Response Message endpoint

The endpoint implements the message submission which is part of the "Message Submission with Synchronous Response" message exchange pattern.

It expects a multipart message, following the User Message section, and sends back a response following the User Message section when successful or

the Problem+JSON json schema when an error occurs, as defined in the Signal Message section.

The URL Fields service and action MUST be provided at design time by the receiving server, through its OpenAPI Document. The messageId MUST

be kept as a URL Field that will be provided by the client submitting the message.

https://www.iana.org/assignments/media-types/media-types.xhtml

ISA² IPS REST API Profile – Version 1.0

81

The Client MUST provide the Original-Sender and the Original-Sender-Token HTTP Header Fields expressed as a compact JWT which can be either an

OpenID Connect Token or a simple JSON Web Token signed by a trusted certificate. When the token is an OpenID Connect Token, it must be provided

by the OpenID Connect Identity Provider stated in the OpenAPI Document of the Messaging API. It MUST also provide the final recipient of the message

in the Final-Recipient HTTP Header Field. The Final-Recipient Header MUST follow the Recipient Addressing Schemes section. The structure and

format of the final recipient are domain-specific and out of scope of this specification.

The Client, when possible, MAY provide one or more signatures following the API Core Profile specification on the Message And Payload Level Security,

creating a JAdES Compliant Compact Detached JWS.

The Server responds with:

• A User Message as defined in the User Message section, on a successful transmission.

• A Signal Message as defined in the Signal Message section, on an error transmission.

7.5.2 Response Message Submission Endpoints

The endpoints defined in this section enable pushing or signalling the availability of responses to initial messages to a Sever or Webhook Server.

The Webhook Server is a server that is coupled with the Client and that is limited to providing the webhook endpoints for response and/or signal

submission.

As an initial message can potentially have multiple final recipients, there may be multiple response messages for a given initial message, each having

its own response message identifier. The response messages may be issued under specific services and actions that are potentially different from those

of the initial message.

7.5.2.1 Authorisation of HTTP Requests

The server responsible for implementing the endpoints defined in this section MUST ensure that the (OAuth) access token used to authorize the

response message submission matches:

• the OpenID Connect Token or the JSON Web Token received in the Original-Sender-Token field of the submitted response message;

• (one of) the Final Recipient(s) of the initial message to which the submitted response message is replying.

The approach to ensure the matching is out of scope of this specification.

ISA² IPS REST API Profile – Version 1.0

82

7.5.2.2 Response Message Submission Endpoint

The Response Message Submission endpoint is the endpoint used for sending response messages in reply to a previously submitted message. It
provides the endpoint to which a client sends the response message, as created by the final recipient. Table 3 provides an overview of the HTTP

Multipart body and fields defined and required for the implementation of this endpoint.

Resource Attributes Resource Value

HTTP Method POST

URL Pattern /messaging/{service}/{action}/{messageId}/response/{rService}/{rAction}/{rMessageId}

HTTP Body

(Content-Type)

multipart/mixed containing the boundary directive

Successful HTTP

Response (Content-

Type)

application/problem+json

Error HTTP

Response (Content-

Type)

application/problem+json

URL Fields Resource Value Format Optionality

service A representation of the service of the initial message the response message

responds to

URL Safe String Mandatory

action A representation of the action related to the service of the initial message the

response message responds to

URL Safe String Mandatory

messageId The identifier of the initial message the response message responds to UUID v4 String Mandatory

rService A representation of the service the response message is submitted to URL Safe String Mandatory

ISA² IPS REST API Profile – Version 1.0

83

rAction A representation of the action related to the service the response message is

submitted to

URL Safe String Mandatory

rMessageId The identifier of the response message being submitted. It MUST be generated by

the client submitting the response message

UUID v4 String Mandatory

Global HTTP

Request Header

Fields

Resource Value Format Optionality

Original-Sender The representation of the Original Sender of the response message. It MUST match

(one of) the Final Recipient(s) of the initial message

String Mandatory

Original-Sender-

Token

The ID Token proving the identity of the Original Sender of the response message Compact JWT Mandatory

Final-Recipient The representation of the Final Recipient of the response message. It MUST match

the Original Sender of the initial message

String Mandatory

Timestamp The timestamp of the message generation Date Mandatory

Edel-Message-Sig The detached JAdES signature signing the sent response message JAdES Compliant Compact

Detached JWS

Optional

Multipart HTTP

Request Subpart

Header Fields

Resource Value Format Optionality

Edel-Payload-Sig The detached JAdES signature signing the subpart of the multipart of the sent

response message

JAdES Compliant Compact

Detached JWS

Optional

Content-

Disposition

The Content-Disposition header, declaring the subpart as an attachment fixed value: 'Attachment' Mandatory

ISA² IPS REST API Profile – Version 1.0

84

Content-Type The content type of the subpart of the multipart message One of IANA Media Types Mandatory

HTTP Response

Header Fields

Resource Value Format Optionality

Message-Id The identifier of the signal message UUID v4 String Mandatory

Timestamp The timestamp of the message generation Date Mandatory

Edel-Message-Sig The detached JAdES signature signing the signal message JAdES Compliant Compact

Detached JWS

Optional

Table 5 Field and attribute overview of the Response Message Submission endpoint

The endpoint implements the response message submission which is part of the "Message Submission with Asynchronous Response – Pull and Push"

message exchange pattern. It expects a multipart message, following the User Message section, and sends back a response following the Problem+JSON

json schema, as defined in the Signal Message section.

The URL Fields service, action, rService and rAction MUST be provided at design time by the receiving server, through its OpenAPI Document.

The messageId and rMessageId MUST be kept as URL Fields that will be provided by the client submitting the response message.

The Client MUST provide the Original-Sender and the Original-Sender-Token HTTP Header Fields expressed as a compact JWT which can be either an

OpenID Connect Token or a simple JSON Web Token signed by a trusted certificate. When the token is an OpenID Connect Token, it must be provided
by the OpenID Connect Identity Provider stated in the OpenAPI Document of the Messaging API. It MUST also provide the final recipient of the message

in the Final-Recipient HTTP Header Field. The Final-Recipient Header MUST follow the Recipient Addressing Schemes section. The structure and

format of the final recipient are domain-specific and out of scope of this specification.

The Client, when possible, MAY provide one or more signatures following the API Core Profile specification on the Message And Payload Level Security,

creating a JAdES Compliant Compact Detached JWS.

The Server responds with a Signal Message as defined in the Signal Message section, both for successful transmission and error transmission.

https://www.iana.org/assignments/media-types/media-types.xhtml

ISA² IPS REST API Profile – Version 1.0

85

7.5.2.3 Webhook Response Message Submission Endpoint

The Webhook Response Message Submission endpoint is the webhook endpoint used for sending response messages in reply to a previously
submitted message. It provides the endpoint to which a server sends the response message, as created by the final recipient. Table 6 provides an

overview of the HTTP Multipart body and fields defined and required for the implementation of this endpoint.

Resource Attributes Resource Value

HTTP Method POST

URL Pattern /messaging-webhook/{messageId}/response/{rService}/{rAction}/{rMessageId}

HTTP Body (Content-

Type)

multipart/mixed containing the boundary directive

Successful HTTP

Response (Content-

Type)

application/problem+json

Error HTTP Response

(Content-Type)

application/problem+json

URL Fields Resource Value Format Optionality

messageId The identifier of the initial message the response message responds to UUID v4 String Mandatory

rService A representation of the service the response message is submitted to URL Safe String Mandatory

rAction A representation of the action related to the service the response message is

submitted to

URL Safe String Mandatory

rMessageId The identifier of the response message being submitted. It MUST be generated

by the server submitting the response message

UUID v4 String Mandatory

ISA² IPS REST API Profile – Version 1.0

86

Global HTTP Request

Header Fields

Resource Value Format Optionality

Original-Sender The representation of the Original Sender of the response message. It MUST

match (one of) the Final Recipient(s) of the initial message

String Mandatory

Original-Sender-Token The ID Token proving the identity of the Original Sender of the response

message

Compact JWT Mandatory

Final-Recipient The representation of the Final Recipient of the response message. It MUST

match the Original Sender of the initial message

String Mandatory

Timestamp The timestamp of the message generation Date Mandatory

Edel-Message-Sig The detached JAdES signature signing the sent response message JAdES Compliant Compact

Detached JWS

Optional

Multipart HTTP Request

Subpart Header Fields

Resource Value Format Optionality

Edel-Payload-Sig The detached JAdES signature signing the subpart of the multipart of the sent

response message

JAdES Compliant Compact

Detached JWS

Optional

Content-Disposition The Content-Disposition header, declaring the subpart as an attachment fixed value: 'Attachment' Mandatory

Content-Type The content type of the subpart of the multipart message One of IANA Media Types Mandatory

HTTP Response Header

Fields

Resource Value Format Optionality

Message-Id The identifier of the signal message UUID v4 String Mandatory

Timestamp The timestamp of the message generation Date Mandatory

https://www.iana.org/assignments/media-types/media-types.xhtml

ISA² IPS REST API Profile – Version 1.0

87

Edel-Message-Sig The detached JAdES signature signing the signal message JAdES Compliant Compact

Detached JWS

Optional

Table 6 Field and attribute overview of the Webhook Response Message Submission endpoint

The endpoint implements the webhook response message submission which is part of the "Message Submission with Asynchronous Response – Push

and Webhook Push" message exchange pattern. It expects a multipart message, following the User Message section, and sends back a

response following the Problem+JSON json schema, as defined in the Signal Message section.

The URL Fields rService and rAction MUST be provided at design time by the server receiving the initial message, through its OpenAPI Document.

The messageId and rMessageId MUST be kept as URL Fields that will be provided by the server submitting the response message.

The Client MUST provide the Original-Sender and the Original-Sender-Token HTTP Header Fields expressed as a compact JWT which can be either an

OpenID Connect Token or a simple JSON Web Token signed by a trusted certificate. When the token is an OpenID Connect Token, it must be provided

by the OpenID Connect Identity Provider stated in the OpenAPI Document of the Messaging API. It MUST also provide the final recipient of the message

in the Final-Recipient HTTP Header Field. The Final-Recipient Header MUST follow the Recipient Addressing Schemes section. The structure and

format of the final recipient are domain-specific and out of scope of this specification.

The Server MAY provide one or more signatures following the API Core Profile specification on the Message And Payload Level Security, creating a

JAdES Compliant Compact Detached JWS.

The Webhook Server responds with a Signal Message as defined in the Signal Message section, both for successful transmission and error transmission.

7.5.2.4 Webhook Signal Submission Endpoint

The Webhook Signal Submission endpoint is the webhook endpoint used for signalling the availability of a response message in reply to a previously

submitted message. It provides the endpoint to which a server signals the availability of the response message. Table 7 provides an overview of the

HTTP Multipart body and fields defined and required for the implementation of this endpoint.

Resource Attributes Resource Value

HTTP Method POST

URL Pattern /messaging-webhook/{messageId}/response/signal

ISA² IPS REST API Profile – Version 1.0

88

HTTP Body (Content-

Type)

application/problem+json

Successful HTTP Response

(Content-Type)

N/A

Error HTTP Response

(Content-Type)

application/problem+json

URL Fields Resource Value Format Optionality

messageId The Identification of the initial message the response message responds to UUID v4 String Mandatory

Global HTTP Request

Header Fields

Resource Value Format Optionality

Original-Sender The representation of the Original Sender of the response message. It MUST

match (one of) the Final Recipient(s) of the initial message

String Mandatory

Original-Sender-Token The ID Token proving the identity of the Original Sender of the response

message

Compact JWT Optional

Final-Recipient The representation of the Final Recipient of the response message. It MUST

match the Original Sender of the initial message

String Mandatory

Timestamp The timestamp of the signal generation Date Mandatory

Edel-Message-Sig The detached JAdES signature signing the sent signal message JAdES Compliant

Compact Detached JWS

Optional

HTTP Response Header

Fields

Resource Value Format Optionality

Message-Id The identifier of the signal message UUID v4 String Mandatory

ISA² IPS REST API Profile – Version 1.0

89

Timestamp The timestamp of the message generation Date Mandatory

Edel-Message-Sig The detached JAdES signature signing the signal message JAdES Compliant

Compact Detached JWS

Optional

Table 7 Field and attribute overview of the Webhook Signal Submission endpoint

The endpoint implements the webhook signal submission which is part of the "Message Submission with Asynchronous Response – Push and Webhook

Pull" message exchange pattern. It expects a single-part message, following the Signal Message section, and sends back a response following the

Problem+JSON json schema, as defined in the Signal Message section.

The signal "Message Response is ready", as defined in the Predefined Signals section, MUST be used in the HTTP Request.

The Client MUST provide the Original-Sender and the Original-Sender-Token HTTP Header Fields expressed as a compact JWT which can be either an

OpenID Connect Token or a simple JSON Web Token signed by a trusted certificate. When the token is an OpenID Connect Token, it must be provided

by the OpenID Connect Identity Provider stated in the OpenAPI Document of the Messaging API. It MUST also provide the final recipient of the message

in the Final-Recipient HTTP Header Field. The Final-Recipient Header MUST follow the Recipient Addressing Schemes section. The structure and

format of the final recipient are domain-specific and out of scope of this specification.

The Server MAY provide a signature following the API Core Profile specification on the Message-Level Security, creating a JAdES Compliant Compact

Detached JWS.

The Webhook Server responds with a Signal Message as defined in the Signal Message section, both for successful transmission and error transmission.

7.5.3 Message Pull endpoints

Following the light context constraints, the specification needs to provide a mechanism for a Client to receive messages in cases where the Original

Sender is on the Server side. In such cases, the resource server must implement the operations defined hereunder.

7.5.3.1 Authorisation of HTTP Requests

The server responsible for implementing the endpoints defined in this section MUST ensure that the (OAuth) access token used to authorize the

message pull request matches the Final Recipient of all the messages included in the message reference list or of the full message returned. The

approach to ensure the matching is out of scope of this specification. One option would be to use the access token to retrieve the identity of the user

making the pull request from the authorization server and compare it to the aforementioned Final Recipient.

ISA² IPS REST API Profile – Version 1.0

90

7.5.3.2 Get Message Reference List Endpoint

This endpoint returns a list of message references available for pulling, following the Message Reference schema. The following table summarises the

endpoint operation parameters:

Resource Attributes Resource Value

HTTP Method GET

URL Pattern /messaging

HTTP Request Body (Content-Type) N/A

Successful HTTP Response (Content-

Type)

application/json

Global HTTP Response Header Fields Resource Value Format Optionality

Message-Id The identifier of the signal message UUID v4 String Conditional

Timestamp The timestamp of the signal message generation Date Conditional

Edel-Message-Sig The detached JAdES signature signing the

message

JAdeS Compliant Compact Detached

JWS

Optional

The endpoint implements the querying mechanism in support of message pulling which is part of the "Send Message with No Response − Pull" and the

"Send Message with Asynchronous Response – Pull and Push" message exchange patterns.

The Server responds with:

• A list of message references, following the Message Reference schema, on success.

• A Signal Message as defined in the Signal Message section, on error.

The Message-Id and Timestamp are mandatory only in case the Server responds with a Signal Message.

ISA² IPS REST API Profile – Version 1.0

91

7.5.3.3 Get Message Reference List for service Endpoint

This endpoint returns a list of message references available for pulling for a specific service, following the Message Reference schema. The following

table summarises the endpoint operation parameters:

Resource Attributes Resource Value

HTTP Method GET

URL Pattern /messaging/{service}

HTTP Request Body (Content-Type) N/A

Successful HTTP Response (Content-

Type)

application/json

Error HTTP Response (Content-Type) application/problem+json

URL Fields Resource Value Format Optionality

service A representation of the service of the message(s) to be

pulled

URL Safe String Mandatory

Global HTTP Response Header Fields Resource Value Format Optionality

Message-Id The identifier of the signal message UUID v4 String Conditional

Timestamp The timestamp of the signal message generation Date Conditional

Edel-Message-Sig The detached JAdES signature signing the message JAdeS Compliant Compact Detached

JWS

Optional

The endpoint implements the querying mechanism in support of message pulling which is part of the "Send Message with No Response − Pull" and the

"Send Message with Asynchronous Response – Pull and Push" message exchange patterns.

The Server responds with:

ISA² IPS REST API Profile – Version 1.0

92

• A list of message references, following the Message Reference schema, on success.

• A Signal Message as defined in the Signal Message section, on error.

The Message-Id and Timestamp are mandatory only in case the Server responds with a Signal Message.

7.5.3.4 Get Message Reference List for service and action Endpoint

This endpoint returns a list of message references available for pulling for a specific service and action, following the Message Reference schema.

The following table summarises the endpoint operation parameters:

Resource Attributes Resource Value

HTTP Method GET

URL Pattern /messaging/{service}/{action}

HTTP Request Body (Content-

Type)

N/A

Successful HTTP Response

(Content-Type)

application/json

Error HTTP Response (Content-

Type)

application/problem+json

URL Fields Resource Value Format Optionality

service A representation of the service of the message(s) to be pulled URL Safe String Mandatory

action A representation of the action related to the service of the

message(s) to be pulled

URL Safe String Mandatory

Global HTTP Response Header

Fields

Resource Value Format Optionality

ISA² IPS REST API Profile – Version 1.0

93

Message-Id The identifier of the signal message UUID v4 String Conditional

Timestamp The timestamp of the signal message generation Date Conditional

Edel-Message-Sig The detached JAdES signature signing the message JAdeS Compliant Compact

Detached JWS

Optional

The endpoint implements the querying mechanism in support of message pulling which is part of the "Send Message with No Response − Pull" and the

"Send Message with Asynchronous Response – Pull and Push" message exchange patterns.

The Server responds with:

• A list of message references, following the Message Reference schema, on success.

• A Signal Message as defined in the Signal Message section, on error.

The Message-Id and Timestamp are mandatory only in case the Server responds with a Signal Message.

7.5.3.5 Get Message Endpoint

This endpoint returns the message filed under a specific service and action, following the format defined in the User Message section. The following

table summarises the endpoint operation parameters:

Resource Attributes Resource Value

HTTP Method GET

URL Pattern /messaging/{service}/{action}/{messageId}

HTTP Request Body (Content-

Type)

N/A

Successful HTTP Response

(Content-Type)

multipart/mixed containing the boundary directive

ISA² IPS REST API Profile – Version 1.0

94

Error HTTP Response

(Content-Type)

application/problem+json

URL Fields Resource Value Format Optionality

service A representation of the service of the message being pulled URL Safe String Mandatory

action A representation of the action related to the service of the message

being pulled

URL Safe String Mandatory

messageId The identifier of the message being pulled. A valid identifier MUST be

provided by the client pulling the message

UUID v4 String Mandatory

Global HTTP Response Header

Fields

Resource Value Format Optionality

Original-Sender The representation of the Original Sender String Conditional

Original-Sender-Token The ID Token proving the identity of the Original Sender Compact JWT Conditional

Final-Recipient The representation of the Final Recipient(s) String Conditional

Message-Id The identifier of the message UUID v4 String Mandatory

Timestamp The timestamp of the message generation Date Mandatory

Edel-Message-Sig The detached JAdES signature signing the message JAdES Compliant Compact

Detached JWS

Optional

Multipart HTTP Response

Subpart Header Fields

Resource Value Format Optionality

Edel-Payload-Sig The detached JAdES signature signing the subpart of the multipart of

the message

JAdES Compliant Compact

Detached JWS

Optional

ISA² IPS REST API Profile – Version 1.0

95

Content-Disposition The Content-Disposition header, declaring the subpart as an

attachment

fixed value: 'Attachment' Mandatory

Content-Type The content type of the subpart of the multipart message One of IANA Media Types Mandatory

The endpoint implements the message pulling mechanism which is part of the "Send Message with No Response − Pull" and the "Send Message with

Asynchronous Response – Pull and Push" message exchange patterns.

The Server responds with:

• A User Message as defined in the User Message section, on success.

• A Signal Message as defined in the Signal Message section, on error.

The Original-Sender, Original-Sender-Token and Final-Recipient response header fields are mandatory only in case the Server responds with a User

Message.

7.5.4 Response Message Pull endpoints

The endpoints defined in this section enable Clients that cannot accommodate a webhook-based push mechanism to request messages that are

responses to initial messages sent by Original Senders through the Client.

For obtaining a response message, the Client needs to be aware of the following:

• The service and action of the initial message

• The message identifier of the initial message

• The service and action of the response message

• The message identifier of the response message

As an initial message can potentially have multiple final recipients, there may be multiple response messages for a given initial message, each having

its own response message identifier. The response messages may be issued under specific services and actions that are potentially different from those

of the initial message.

https://www.iana.org/assignments/media-types/media-types.xhtml

ISA² IPS REST API Profile – Version 1.0

96

To facilitate response message discovery, the several API endpoints have been defined.

7.5.4.1 Authorisation of HTTP Requests

The server responsible for implementing the endpoints defined in this section MUST ensure that the (OAuth) access token used to authorize the

response message pull request matches the Final Recipient of all the response messages included in the message reference list or of the full response

message returned. The approach to ensure the matching is out of scope of this specification. One option would be to use the access token to retrieve

the identity of the user making the pull request from the authorization server and compare it to the aforementioned Final Recipient.

7.5.4.2 Get Response Message Reference List Endpoint

This endpoint returns a list of response message references available for pulling, following the Message Reference schema, representing responses to

a previous message sent by the original sender. The following table summarises the endpoint operation parameters:

Resource Attributes Resource Value

HTTP Method GET

URL Pattern /messaging/{service}/{action}/{messageId}/response

HTTP Request Body

(Content-Type)

N/A

Successful HTTP

Response (Content-Type)

application/json

Error HTTP Response

(Content-Type)

application/problem+json

URL Fields Resource Value Format Optionality

service A representation of the service of the initial message the response

message(s) to be pulled pertain(s) to

URL Safe String Mandatory

ISA² IPS REST API Profile – Version 1.0

97

action A representation of the action related to the service of the initial message the

response message(s) to be pulled pertain(s) to

URL Safe String Mandatory

messageId The identifier of the initial message the response message(s) to be pulled

pertain(s) to

UUID v4 String Mandatory

Global HTTP Response

Header Fields

Resource Value Format Optionality

Message-Id The identifier of the signal message UUID v4 String Conditional

Timestamp The timestamp of the signal message generation Date Conditional

Edel-Message-Sig The detached JAdES signature signing the message JAdES Compliant Compact

Detached JWS

Optional

The endpoint implements the querying mechanism in support of response message pulling which is part of the "Send Message with Asynchronous

Response – Push and Pull" and the "Send Message with Asynchronous Response – Push and Webhook Pull" message exchange patterns.

The Server responds with:

• A list of response message references, following the Message Reference schema, on success.

• A Signal Message as defined in the Signal Message section, on error.

The Message-Id and Timestamp are mandatory only in case the Server responds with a Signal Message.

7.5.4.3 Get Response Message Reference List for service Endpoint

This endpoint returns a list of response message references available for pulling for a specific service, following the Message Reference schema,

representing responses to a previous message sent by the original sender. The following table summarises the endpoint operation parameters:

Resource Attributes Resource Value

HTTP Method GET

ISA² IPS REST API Profile – Version 1.0

98

URL Pattern /messaging/{service}/{action}/{messageId}/response/{rService}

HTTP Request Body

(Content-Type)

N/A

Successful HTTP

Response (Content-

Type)

application/json

Error HTTP Response

(Content-Type)

application/problem+json

URL Fields Resource Value Format Optionality

service A representation of the service of the initial message the response message(s)

to be pulled pertain(s) to

URL Safe String Mandatory

action A representation of the action related to the service of the initial message the

response message(s) to be pulled pertain(s) to

URL Safe String Mandatory

messageId The identifier of the initial message the response message(s) to be pulled

pertain(s) to

UUID v4 String Mandatory

rService A representation of the service of the response message(s) to be pulled URL Safe String Mandatory

Global HTTP Response

Header Fields

Resource Value Format Optionality

Message-Id The identifier of the signal message UUID v4 String Conditional

Timestamp The timestamp of the signal message generation Date Conditional

Edel-Message-Sig The detached JAdES signature signing the message JAdES Compliant Compact

Detached JWS

Optional

ISA² IPS REST API Profile – Version 1.0

99

The endpoint implements the querying mechanism in support of response message pulling which is part of the "Send Message with Asynchronous

Response – Push and Pull" and the "Send Message with Asynchronous Response – Push and Webhook Pull" message exchange patterns.

The Server responds with:

• A list of response message references, following the Message Reference schema, on success.

• A Signal Message as defined in the Signal Message section, on error.

The Message-Id and Timestamp are mandatory only in case the Server responds with a Signal Message.

7.5.4.4 Get Response Message Reference List for service and action Endpoint

This endpoint returns a list of response message references available for pulling for a specific service and action, the Message Reference

schema, representing responses to a previous message sent by the original sender. The following table summarises the endpoint operation

parameters:

Resource Attributes Resource Value

HTTP Method GET

URL Pattern /messaging/{service}/{action}/{messageId}/response/{rService}/{rAction}

HTTP Request Body

(Content-Type)

N/A

Successful HTTP

Response (Content-

Type)

application/json

Error HTTP Response

(Content-Type)

application/problem+json

URL Fields Resource Value Format Optionality

ISA² IPS REST API Profile – Version 1.0

100

service A representation of the service of the initial message the response message(s) to

be pulled pertain(s) to

URL Safe String Mandatory

action A representation of the action related to the service of the initial message the

response message(s) to be pulled pertain(s) to

URL Safe String Mandatory

messageId The identifier of the initial message the response message(s) to be pulled

pertain(s) to

UUID v4 String Mandatory

rService A representation of the service of the response message(s) to be pulled URL Safe String Mandatory

rAction A representation of the action related to the service of the response message(s)

to be pulled

URL Safe String Mandatory

Global HTTP

Response Header

Fields

Resource Value Format Optionality

Message-Id The identifier of the signal message UUID v4 String Conditional

Timestamp The timestamp of the signal message generation Date Conditional

Edel-Message-Sig The detached JAdES signature signing the message JAdES Compliant Compact

Detached JWS

Optional

The endpoint implements the querying mechanism in support of response message pulling which is part of the "Send Message with Asynchronous

Response – Push and Pull" and the "Send Message with Asynchronous Response – Push and Webhook Pull" message exchange patterns.

The Server responds with:

• A list of response message references, following the Message Reference schema, on success.

• A Signal Message as defined in the Signal Message section, on error.

The Message-Id and Timestamp are mandatory only in case the Server responds with a Signal Message.

ISA² IPS REST API Profile – Version 1.0

101

7.5.4.5 Get Response Message Endpoint

This endpoint returns the message filed under a specific service and action, following the format defined in the User Message section, representing

a response to a previous message sent by the original sender. The following table summarises the endpoint operation parameters:

Resource Attributes Resource Value

HTTP Method GET

URL Pattern /messaging/{service}/{action}/{messageId}/response/{rService}/{rAction}/{rMessageId}

HTTP Request Body

(Content-Type)

N/A

Successful HTTP

Response (Content-

Type)

multipart/mixed containing the boundary directive

Error HTTP

Response (Content-

Type)

application/problem+json

URL Fields Resource Value Format Optionality

service A representation of the service of the initial message the response message being

pulled pertains to

URL Safe String Mandatory

action A representation of the action related to the service of the initial message the

response message being pulled pertains to

URL Safe String Mandatory

messageId The identifier of the initial message the response message being pulled pertains to UUID v4 String Mandatory

rService A representation of the service of the response message being pulled URL Safe String Mandatory

ISA² IPS REST API Profile – Version 1.0

102

rAction A representation of the action related to the service of the response message being

pulled

URL Safe String Mandatory

rMessageId The identifier of the response message being pulled. A valid identifier MUST be

provided by the client pulling the resposne message

UUID v4 String Mandatory

Global HTTP

Response Header

Fields

Resource Value Format Optionality

Original-Sender The representation of the Original Sender of the response message String Conditional

Original-Sender-

Token

The ID Token proving the identity of the Original Sender of the response message Compact JWT Conditional

Final-Recipient The representation of the Final Recipient(s) of the response message String Conditional

Message-Id The identifier of the message UUID v4 String Mandatory

Timestamp The timestamp of the message generation Date Mandatory

Edel-Message-Sig The detached JAdES signature signing the message JAdES Compliant Compact

Detached JWS

Optional

Multipart HTTP

Response Subpart

Header Fields

Resource Value Format Optionality

Edel-Payload-Sig The detached JAdES signature signing the subpart of the multipart of the message JAdES Compliant Compact

Detached JWS

Optional

Content-Disposition The Content-Disposition header, declaring the subpart as an attachment fixed value: 'Attachment' Mandatory

Content-Type The content type of the subpart of the multipart message One of IANA Media Types Mandatory

https://www.iana.org/assignments/media-types/media-types.xhtml

ISA² IPS REST API Profile – Version 1.0

103

The endpoint implements the querying mechanism in support of response message pulling which is part of the "Send Message with Asynchronous

Response – Push and Pull" and the "Send Message with Asynchronous Response – Push and Webhook Pull" message exchange patterns.

The Server responds with:

• A User Message as defined in the User Message section, on success.

• A Signal Message as defined in the Signal Message section, on error.

The Original-Sender, Original-Sender-Token and Final-Recipient response header fields are mandatory only in case the Server responds with a User

Message.

ISA² IPS REST API Profile – Version 1.0

104

8 HIGH-SECURITY ENHANCEMENT

8.1 INTRODUCTION
The API Core Profile defines guidelines on how Message-Level Security, Payload Security

and Identification flows MUST be implemented if needed. The High-Security Enhancement

makes their implementation mandatory, further restricting the algorithms that can be used,

and forbids the use of flows that are considered less safe for use from a security perspective.

8.2 OPENID CONNECT FLOWS
Given that they provide a great enhancement in overall interoperability with minimal risk,

the API Core Profile allows OpenID Connect flows that are generally considered less safe.

This enhancement requires that the Hybrid Flow MUST NOT be used. Thus the section on

Profiled OpenID Connect Flows MUST NOT be taken into consideration for the High-

Security Enhancement.

8.3 SECURITY

8.3.1 Transport Level Security

This enhancement mandates the use of Transport Layer Security 1.3 [RFC8446]. Thus, SSL

2.0, SSL 3.0, TLS 1.0, TLS 1.1 and TLS 1.2 MUST NOT be used. The following algorithms MUST

be used with TLS 1.3:

Key exchange Certificate Verification Bulk Encryption Hashing

ECDHE ECDSA AES_256_GCM (HMAC-)SHA-384

8.3.2 Message Level Security & Payload Security

This enhancement enforces the use of both Message-Level Security and Payload Security.

The enhancement also modifies the list of allowed algorithms:

• The ECDSA Algorithm with SHA-384 and P-384 Curve MUST be supported, with a

key length of at least 256 bits. The value "ES384" for the "alg" parameter MUST be

used in this case as defined in [RFC7518].

• The EdDSA Algorithm [RFC8032] using one of the curves defined in [RFC7748]

SHOULD be supported and is RECOMMENDED for use, with a key length of at least

256 bits. The value "EdDSA" for the "alg" parameter MUST be used in this case and

the curve shall be encoded in the "crv" parameter as defined in [RFC8037].

Any other algorithms MUST NOT be used.

ISA² IPS REST API Profile – Version 1.0

105

9 DISCOVERABILITY ENHANCEMENT

9.1 INTRODUCTION
The API Core Profile defines a minimal set of guidelines on how APIs should support

discoverability. The Discoverability Enhancement extends this set to mandate further

discoverability guidelines. Thus, an API conforming to the Discoverability Enhancement

MUST implement both the guidelines defined in the Discoverability section of the API Core

Profile, by providing all the OpenAPI attributes prescribed therein, and the additional ones

defined in the Discoverability Enhancement.

9.2 DISCOVERABILITY ENHANCEMENT
The discoverability enhancement mandates the use of the following additional attributes

that MUST be present in the OpenAPI Document:

• The description, using info.description property;

• The documentation URL using the externalDocs properties;

• Information on the servers property, pointing to all the known deployed instances

of the API as shown in the servers object example in the [OAS-V3]. It is

RECOMMENDED that a staging URL is equally provided for users to be able to test

the API.

The following example provides a summary of the fields required for enhanced API

discoverability:

info:

 title: The API

 description: This API provides access to citizen resources

 x-edelivery:

 publisher:

 name: The API Publishing Organization

 url: http://www.organization.org/

 lifecycle:

 maturity: deprecated

 deprecated_at: 2020-12-31

 sunset_at: 2021-12-31

servers:

- url: https://api.the-server.com/v2

 description: Basepath serving version 2.x.y of the API

externalDocs:

 description: "API User guide"

 url: https://example.com/guide.pdf

https://spec.openapis.org/oas/v3.0.3#server-object-example

ISA² IPS REST API Profile – Version 1.0

106

REFERENCES

[BCP14] Key words for use in RFCs to Indicate Requirement Levels and Ambiguity of

Uppercase vs Lowercase in RFC 2119 Key Words. https://www.rfc-editor.org/info/bcp14

[DRAFT-IETF-HTTP-DGST-HDR] Digest Fields. (work in progress)

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-digest-headers

[DRAFT-IETF-HTTPAPI-DPRC-HDR] The Deprecation HTTP Header Field. (work in

progress) https://datatracker.ietf.org/doc/html/draft-ietf-httpapi-deprecation-header

[DRAFT-IETF-HTTPSBIS-MSG-SIGS] HTTP Message Signatures. (work in progress)

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-message-signatures

[DRAFT-IETF-OAUTH-JWT-INTROSPECTION] JWT Response for OAuth Token

Introspection. (work in progress) https://datatracker.ietf.org/doc/html/draft-ietf-oauth-

jwt-introspection-response

[EDELIVERY-AS4-PROFILE] eDelivery AS4 Profile Version 1.15

https://ec.europa.eu/digital-building-blocks/wikis/x/RqbXGw

[ENISA-CRYPTO-2020] ENISA Good Practises in Cryptography – Primitives and Schemes,

December 2020. (Limited availability)

[ETSI-JADES] ETSI TS 119 182-1 V1.1.1 (2021-03) Electronic Signatures and

Infrastructures (ESI); JAdES digital signatures built on JSON Web Signatures; Part 1:

Building blocks and JAdES baseline

signatures. https://www.etsi.org/deliver/etsi_ts/119100_119199/11918201/01.01.01_6

0/ts_11918201v010101p.pdf

[FIELDING-2000] Fielding, R. T., "Architectural Styles and the Design of Network-based

Software Architectures", 2000.

https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

[HTTP-STATUS-CODES-REG] Hypertext Transfer Protocol (HTTP) Status Code Registry.

https://www.iana.org/assignments/http-status-codes

[ISA-CORE-VOC]. https://joinup.ec.europa.eu/collection/semantic-interoperability-

community-semic/solution/e-government-core-vocabularies

[OAS-V3] OpenAPI Specification version 3.1.0 https://spec.openapis.org/oas/v3.1.0

[OIDC-CORE] OpenID Connect 1.0 Core Specification. https://openid.net/specs/openid-

connect-core-1_0.html

[OIDC-DRAFT-ID-ASSUR] OpenID Connect for Identity Assurance 1.0.

https://openid.net/specs/openid-connect-4-identity-assurance-1_0.html

[RFC2046] Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types.

https://datatracker.ietf.org/doc/html/rfc2046

[RFC2119] Key words for use in RFCs to Indicate Requirement Levels.

https://datatracker.ietf.org/doc/html/rfc2119

[RFC2234] Augmented BNF for Syntax Specifications: ABNF.

https://datatracker.ietf.org/doc/html/rfc2234

https://www.rfc-editor.org/info/bcp14
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-digest-headers
https://datatracker.ietf.org/doc/html/draft-ietf-httpapi-deprecation-header
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-message-signatures
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-jwt-introspection-response
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-jwt-introspection-response
https://ec.europa.eu/digital-building-blocks/wikis/x/RqbXGw
https://www.etsi.org/deliver/etsi_ts/119100_119199/11918201/01.01.01_60/ts_11918201v010101p.pdf
https://www.etsi.org/deliver/etsi_ts/119100_119199/11918201/01.01.01_60/ts_11918201v010101p.pdf
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.iana.org/assignments/http-status-codes
https://joinup.ec.europa.eu/collection/semantic-interoperability-community-semic/solution/e-government-core-vocabularies
https://joinup.ec.europa.eu/collection/semantic-interoperability-community-semic/solution/e-government-core-vocabularies
https://spec.openapis.org/oas/v3.1.0
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-4-identity-assurance-1_0.html
https://datatracker.ietf.org/doc/html/rfc2046
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2234

ISA² IPS REST API Profile – Version 1.0

107

[RFC2387] The MIME Multipart/Related Content-type.

https://datatracker.ietf.org/doc/html/rfc2387

[RFC3230] Instance Digests in HTTP. https://datatracker.ietf.org/doc/html/rfc3230

[RFC3339] Date and Time on the Internet: Timestamps.

https://datatracker.ietf.org/doc/html/rfc3339

[RFC3986] Uniform Resource Identifier (URI): Generic Syntax.

https://datatracker.ietf.org/doc/html/rfc3986

[RFC5246] The Transport Layer Security (TLS) Protocol Version 1.2.

https://datatracker.ietf.org/doc/html/rfc5246

[RFC5789] PATCH Method for HTTP. https://datatracker.ietf.org/doc/html/rfc5789

[RFC5988] Web Linking. https://datatracker.ietf.org/doc/html/rfc5988

[RFC6749] The OAuth 2.0 Authorization Framework.

https://datatracker.ietf.org/doc/html/rfc6749

[RFC7240] Prefer Header for HTTP. https://datatracker.ietf.org/doc/html/rfc7240

[RFC7231] Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content.

https://datatracker.ietf.org/doc/html/rfc7231

[RFC7515] JSON Web Signature (JWS). https://datatracker.ietf.org/doc/html/rfc7515

[RFC7518] JSON Web Algorithms (JWA). https://datatracker.ietf.org/doc/html/rfc7518

[RFC7519] JSON Web Token (JWT). https://datatracker.ietf.org/doc/html/rfc7519

[RFC7521] Assertion Framework for OAuth 2.0 Client Authentication and Authorization

Grants. https://datatracker.ietf.org/doc/html/rfc7521

[RFC7522] Security Assertion Markup Language (SAML) 2.0 Profile for OAuth 2.0 Client

Authentication and Authorization Grants. https://datatracker.ietf.org/doc/html/rfc7522

[RFC7523] JSON Web Token (JWT) Profile for OAuth 2.0 Client Authentication and

Authorization Grants. https://datatracker.ietf.org/doc/html/rfc7523

[RFC7636] Proof Key for Code Exchange by OAuth Public Clients.

https://datatracker.ietf.org/doc/html/rfc7636

[RFC7662] OAuth 2.0 Token Introspection. https://datatracker.ietf.org/doc/html/rfc7662

[RFC7748] Elliptic Curves for Security. https://datatracker.ietf.org/doc/html/rfc7748

[RFC7807] Problem Details for HTTP APIS. https://datatracker.ietf.org/doc/html/rfc7807

[RFC8032] Edwards-Curve Digital Signature Algorithm (EdDSA).

https://datatracker.ietf.org/doc/html/rfc8032

[RFC8037] CFRG Elliptic Curve Diffie-Hellman (ECDH) and Signatures in JSON Object

Signing and Encryption (JOSE). https://datatracker.ietf.org/doc/html/rfc8037

[RFC8174] Key words for use in RFCs to Indicate Requirement Levels.

https://datatracker.ietf.org/doc/html/rfc8174

https://datatracker.ietf.org/doc/html/rfc2387
https://datatracker.ietf.org/doc/html/rfc3230
https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5789
https://datatracker.ietf.org/doc/html/rfc5988
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc7240
https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc7515
https://datatracker.ietf.org/doc/html/rfc7518
https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc7521
https://datatracker.ietf.org/doc/html/rfc7522
https://datatracker.ietf.org/doc/html/rfc7523
https://datatracker.ietf.org/doc/html/rfc7636
https://datatracker.ietf.org/doc/html/rfc7662
https://datatracker.ietf.org/doc/html/rfc7748
https://datatracker.ietf.org/doc/html/rfc7807
https://datatracker.ietf.org/doc/html/rfc8032
https://datatracker.ietf.org/doc/html/rfc8037
https://datatracker.ietf.org/doc/html/rfc8174

ISA² IPS REST API Profile – Version 1.0

108

[RFC8446] The Transport Layer Security (TLS) Protocol Version 1.3.

https://datatracker.ietf.org/doc/html/rfc6749

[RFC8594] The Sunset HTTP Header Field. https://datatracker.ietf.org/doc/html/rfc8594

[RFC9068] JSON Web Token (JWT) Profile for OAuth 2.0 Access Tokens.

https://datatracker.ietf.org/doc/html/rfc9068

[SEMVER] Semantic Versioning 2.0.0. https://semver.org/spec/v2.0.0.html

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc8594
https://datatracker.ietf.org/doc/html/rfc9068
https://semver.org/spec/v2.0.0.html

ISA² IPS REST API Profile – Version 1.0

109

CHANGELOG

9.3 VERSION 1.0
• Global changes:

o Made editorial changes to improve content clarity

• Changes to API Core Profile section:

o Removed non-normative material in several sections

o Introduced 'Client Authentication Framework Profile' for machine clients

o Specified further mandatory elements to include in the signature when

Message-Level Security is used

o Replaced info.x-edel-lifecycle with info.x-edelivery.lifecycle

o Replaced info.x-edel-publisher with info.x-edelivery.publisher

o Extended approach to pagination with cursor-based pagination and the

recommended use of the Link header

• Changes to API Documentation section:

o Mandatory documentation endpoint /openapi replaced with

/openapi.yaml or /openapi.json

o Removed requirement to use "DeprecatedOperation" tag

o JSON schema names switched to CamelCase

o JwsCompactDetached JSON schema definition is more restrictive

• Changes to Messaging API Specification section:

o Message Exchange Patterns functional roles renamed from Original

Sender/Final Recipient to Submitter/Receiver or Requester/Responder

o Two new headers introduced:

▪ Original-Sender-Token to carry ID token instead of Original-Sender

▪ Message-Id to carry the message id in a response message or in a

signal message

o Due diligence followed for the HTTP fields introduced by the specification

o Clarifications introduced with regard to Timestamp precision

o New predefined signal Server Errors

o Message-Id and Timestamp HTTP headers now mandatory for most HTTP

responses

o Get Response Message Reference List endpoints now allow the Edel-

Message-Sig header to be present in the HTTP Response

https://httpwg.org/http-core/draft-ietf-httpbis-semantics-latest.html#considerations.for.new.fields

ISA² IPS REST API Profile – Version 1.0

110

9.4 VERSION 0.3 - RELEASE CANDIDATE
• Changes to REST API Core Profile:

o Made editorial changes to improve content clarity

o Introduced profiling of JAdES-based JSON Web Signatures for Message-

Level Security and Payload Security

o Renamed prefix of custom HTTP Headers from "x-" to "edel-" naming

scheme

o Added new subsections on REST API Design and Single and Multipart

Resource Representations in the section Common Semantics

• Added initial version of the API Documentation, using OpenAPI 3.1

• Added initial version of the Messaging API Specification

9.5 VERSION 0.2 - PARTIAL DRAFT
• The initial release of the ISA² IPS REST API Profile. Contains the first iteration of the

REST API Core Profile with the High Security and Discoverability Enhancements

