
LDES and its Pilots
DIGIT.B2 - Interoperability.

30
April
2024

A u d i o

C h a t

R e c o r d i n g

Workshop
practicalities

Objectives of
this webinar

U p d a t e t h e c o m m u n i t y

A g l i m p s e o f t h e f u t u r e

02

01

Agenda

I n t r o d u c t i o n t o D C A T - A P f e e d s

T h e p i l o t g o e s o n : D C A T - A P f e e d s a t D a t a . E u r o p a . E U

T h e f u t u r e o f L D E S

02

01

03

04

L D E S @ R i j k s m u s e u m

A Linked Data Event Stream (LDES)

A publication
technology to

share or aggregate
information with
or from multiple

parties

Allowing
everyone to

replicate and stay
up-to-date

regarding the
unique source of

truth

What is a LDES?

A Linked Data Event Stream (LDES) is a collection of immutable objects whereby you do not
change the data itself but simply add new data records to the stream. It represents a publication
strategy to publish and make data discoverable in a cost-effective and flexible manner.

It allows data users to:

Have up to

date data

Be aware of

changes

Access to

historic data

Relate

historic data

to current

data

... ...

Event

LDES helps you to structure your data as stream data, enabling you and your users to keep track of
what changed at the data level, independently from the data format.

Introduction to
DCAT-AP feeds

About us

Mattias Ekhem
- Architect
- Digg

Matthias Palmér

- PhD
- Consultant Digg
- CTO Metasolutions AB

Agenda

▪ The Swedish dataportal and the business case
▪ What is all the fuss about harvesting
▪ Implementation report
▪ Future issues

The Swedish dataportal

Been around since 2014

Maintained by the Swedish Agency for digital Government
(Digg)

The Swedish dataportal contains the national registry for
datasets (Open data Directive) as well as support for data
users and data producers.

More in Swedish

Three ways of harvesting data catalogs

▪ Shared editing platform (national instance)
▪ Shared domain catalogs (e.g. geodata)
▪ Individual catalogs

Business case for exploring LDES (Digg)

Synchronization issues with data.europa.eu

- Minimize discrepancies in dataset search
- Quicker detection of problems
- Quicker updates

Use of standards

- Validate that the use of the harvesting protocol is
followed

- Define more clearly what is needed to be harvested

Harvesting scalability

What is all the fuss
about harvesting?

Discovery &

reuse

Regulations &

Enforcement

Inspiration &

Innovation

Efficiency &

Interoperability

Agreements

Datasets

Dataservices

Dataset series
Good

examples

Specifications

Models

Concepts

Quality

reviews MQA

Established

Decided

Plans

Primary

harvesting

Secondary

harvesting

Primary Harvesting (Data catalogs)

Process

- One file per source
- RDF/XML format
- Named graph extraction per main

entity
- URI generation (sometimes)
- Fingerprinting metadata for

detecting updates
- Validation of DCAT-AP-SE
- Harvesting report
- Notifications on errors

Issues

- DCAT-AP is a vocabulary,
- not a protocol
- RDF/XML is fragile
- Identifiers missing (URIs)
- Implicit when to update
- Scalability for large sources
- Reports missing from upstream

harvesting (data.europe.eu)

Why DCAT-AP feeds (LDES)

Some of the issues have solutions already

BUT

Some remain and we prefer that we solve things together
and document the mechanism clearly.

Implementation report
(Sweden)

dataportal.se

Org X

Org Z

data.europa.euorLDESOrg Y

Implementation report
(Sweden)

dataportal.se

Org X

Org Z

(EntryStore)

data.europa.euorLDES

export
Org Y LDES

import

First implementation

done by Pieter

First implementation

in progress.

EntryStore native support in

planning phase

First implementation in

progress / done?

Implementation in other systems

Like CKAN, is not in pilot

Same

import

Future Issues

Main headache

No record of deletes in some systems.

Solution 1 - add support in original system

Solution 2 - do a wrapper which keeps an index

How long de we keep the records of deleted entities?

Standardized harvesting report

Agree on a information model, perhaps in RDF?

OR

Just agree on a JSON expression?

How detailed should it be?

How technical should it be, direct it towards:

- Portal providers?
- Data catalog providers?

Secondary harvesting

Do we need a complete new specification every time?

- SKOS Feed specification?
- PROF Feed specification?
- Etc.

Or, can it be "parametrized" by the entity types?

Backwards compatibility

▪ Continue support for file based harvesting?
▪ Risk of only increasing the burden of harvesting

maintenance.
▪ Can we support an envisioned harvesting report for the

file based harvesting?

Thank you

Telephone: 0046-771-11 44 00

E-mail: info@digg.se

www.digg.se

mailto:info@Digg.se

The DCAT-AP Feeds
specification

Pieter Colpaert
Matthias Palmér

Launching the first draft

Timeline

Named Graphs in LDES

The W3C TREE hypermedia

community group added named

graphs support in the

specification, enabling this for

LDES as well.

DIGG wants to move forward.

Oct
Sept

2023

First encounter SEMIC-

DIGG

Identified DCAT-AP harvesting

as a pilot

But…

Matthias said he doesn’t want to

do LDES because LDES didn’t

support named graphs.

Official go

We created the skeleton of the

specification

Nov

The Ghent meeting

resulting in a first draft

Dec

Timeline

Febr

2023

A first implementation

based on Sweden dumps The webinar

Introducing the first official draft

of DCAT-AP Feeds

Showing the first prototype

implementation for Sweden

Apr

SEMIC2024

JuneMar

Putting in a lot of work

Launching

the DCAT-AP Feeds 0.1 spec

Showing the first real

implementation for Sweden

Showing implementations in

other systems

Contents of the spec

1. Telling whether something is a Create, Update or Delete

2. Stand-alone, embedded and referenced entities

3. The Linked Data Event Stream description

4. A retention policy

5. A smart but straightforward pagination of the feed

6. DCAT-AP Feeds SHACL shape for updates

We’ll provide examples in both JSON-LD and TRiG (Turtle with named graphs)

{
"@context": "context.jsonld",
"@id": "#Dataset1",
"@type": "dcat:Dataset",

}

add prefixes
<#Dataset1> a dcat:Dataset .

A DCAT-AP feed

Every time there’s an update, it should tell us how we can change our copy

We re-use the ActivityStreams vocabulary:

● as:Create and as:Update are “upserts”

● as:Delete indicates it has been deleted from the source

…

{
"@id": "#DatasetEvent1",
"@type": "Create",
"object": "https://example.org/Dataset1",
"published" : "2023-10-01T12:00:00Z"

}

<#DatasetEvent1> a as:Create ;
as:object <https://example.org/Dataset1> ;
as:published "2023-10-01T12:00:00Z"^^xsd:dateTime .

https://www.w3.org/TR/activitystreams-vocabulary/

What triples do we upsert/remove?

We’ll use named graphs for that

<#Dataset1Event1> a as:Create ;
as:object <https://example.org/Dataset1> ;
as:published "2023-10-01T12:00:00Z"^^xsd:dateTime .

<#Dataset1Event1> {
<https://example.org/Dataset1> a dcat:Dataset ;

The (updated) representation of this particular
dataset

...

}

{
"@id": "#Dataset1Event1",
"@type": "Create",
"object": "https://example.org/Dataset1",
"published" : "2023-10-01T12:00:00Z",
"@graph": {

"@id": "https://example.org/Dataset1",
"@type": "dcat:Dataset",
…

}

}

Indicating these objects are part of a feed

⇒ an append-only log = a Linked Data Event Stream

{
"@id": "#Feed",
"@type": "EventStream",
"title": "My DCAT-AP Feed",
"member": [{

"@id": "#Dataset1Event1",
"@type": "Create",
"object": "https://example.org/Dataset1",
"published" : "2023-10-01T12:00:00Z",
"@graph": {

"@id": "https://example.org/Dataset1",
"@type": "dcat:Dataset",

},
…

]

}

<#Feed> a ldes:EventStream ;
dct:title "My DCAT-AP Feed" ;
tree:member <https://example.org/Dataset1#Event1>

.

<#Dataset1Event1> a as:Create ;
as:object <https://example.org/Dataset1> ;
as:published "2023-10-01T12:00:00Z"^^xsd:dateTime .

<#Dataset1Event1> {
<https://example.org/Dataset1> a dcat:Dataset ;

}

What is part of one update?

DCAT-AP Feeds specifies a dcat:Distribution should be a stand-alone entity that has an IRI.

If you cannot provide an IRI, then it must appear as an embedded entity within the update about a

dcat:Dataset.

Referenced entities should not be included in the feed.

Entity types

ex:D1

_:b1

Dataset1

nal:ECON

dcat:Dataset

20230101

20231131

xsd:date

xsd:date

dcterms:title

dcterms:temporal

dcat:theme

dcat:startDate

dcat:endDate

rdf:type

Standalone

Embedded

Referenced

Standalone

- dcat:Catalog

- dcat:Dataset

- dcat:Distribution

- dcat:DataService

- foaf:Agent

- vcard:Kind

- dcterms:LicenseDocument

Which entities do we have?

Embedded

- spdx:Checksum

- dcterms:Location

- locn:Geometry

- dcat:Relationship

- prov:Activity

- dcat:Attribution

- spdx:ChecksumAlgorithm

- foaf:Document

- adms:Identifier

Referenced

- dcterms:LicenseDocument

- ConceptSchemes

- skos:Concept

- frequency

- theme

- etc.

- dcterms:MediaType

- dcterms:PeriodOrTime

- odrl:Policy

- dcterms:ProvenanceStatement (?)

- dcterms:RightsStatement (?)

- dcat:Role

- dcterms:Standard

Adding some fields useful for LDES clients

{
"@id": "#Feed",
"@type": "EventStream",
"title": "My DCAT-AP Feed",
"timestampPath": "published",
"versionOfPath": "object",
"view": {

"@id": ""
},
"member": [{

…

]

}

<#Feed> a ldes:EventStream ;
dct:title "My DCAT-AP Feed" ;
ldes:timestampPath as:published ;
ldes:versionOfPath as:object ;
tree:view <> ;
tree:member … .

● timestampPath: tells a client how the events need to be ordered
● versionOfPath: tells a client what the identifier is of what is represented
● view: must link to the current page (i.e. use a relative IRI):

⇒ tells the client this page is a (partial) view of the event stream

LDES supports retention policies

yesterday

you can have multiple views of the same feed with different retention policies.

…

Today

Today

Full history view

Exactly the same LDES, but a view with a latest version subset only keeping the last version

yesterday

…

= more efficient when harvesters are only interested in the latest state

Indicating we only keep the latest version

<#Feed> tree:view <> ;
ldes:timestampPath as:published ;
ldes:versionOfPath as:object .

<> ldes:retentionPolicy [
a ldes:LatestVersionSubset ;
ldes:amount 1

] .

{
"@id": "#Feed",
"@type": "EventStream",
"timestampPath": "published",
"versionOfPath": "object",
"view": {

"@id": "",
"ldes:retentionPolicy": {

"@type": "ldes:LatestVersionSubset",
"ldes:amount": "1"

}

},
"member": [{

…

]

}

Problem
dumping this in one file is efficient for first-

time replication, but not for
synchronization

Solution: a search tree

root

2021 2022 2023 2024

…

Year

↓

Month
↓

Day
↓

Hour

Light-weight
Serve using static pages,
or as a dynamic server app

Describing search trees using TREE relations

A hypermedia spec by the W3C TREE community group

<#Feed> tree:view <> ;
<> tree:relation [

a tree:GreaterThanOrEqualToRelation ;
tree:path as:published ;
tree:value "2020-01-01T00:00:00Z"^^xsd:dateTime ;
tree:node </2020.trig>

] ,
[

a tree:LessThanRelation ;
tree:path as:published ;
tree:value "2021-01-01T00:00:00Z"^^xsd:dateTime ;
tree:node </2020.trig>

]
.

{
"@id": "#Feed",
"@type": "EventStream",
"timestampPath": "published",
"versionOfPath": "object",
"view": {

"@id": "",
"tree:relation": [{

"@type": "tree:GreaterThanOrEqualToRelation",
"tree:path": "published",
"tree:value": "2020-01-01T00:00:00Z",
"tree:node": "2020.jsonld",

},
…
]

},
"member": [{

…

]

}

https://www.w3.org/community/treecg/

SHACL shapes

Dedicated SHACL shapes for the DCAT-AP Feeds specification

Automatically syncs with the official DCAT-AP shapes, and

extends it with how entities will appear in the feed

What we learned

Named graphs are an elegant addition to the LDES spec

More input for the LDES spec itself

A retention policy specifically for deletions should be added in the LDES spec: how long do you want to

keep removals? Maybe also implicit removals need to be supported?

Domain specific primers?

Write primers like this for other domains as well, such as for Cultural Heritage

But most importantly

The DCAT-AP Feeds specification is now ready

for your comments and implementations

Thanks!

Happy publishing!

The pilot goes on:
DCAT-AP feeds @
Data.Europa.EU

DATA.EUROPA.EU - LINKED
DATA EVENT STREAM
Dr. Simon Steuer,

Head of Sector, Publications Office of the EU

30 April 2024

CURRENT DATA HARVESTING
PROCESSES
183 data catalogues on data.europa.eu

Metadata retrieval

Portal providerPull (harvesting)

Push (data providers interface form, API)

− EU institutions,
agencies and bodies

− European countries

− Projects

Data acquisition

Scheduler

Importer

Transformer

− Main entry point for the service orchestration.
− Periodically triggers the harvesting process, defined

as a pipeline descriptor.
− Frequency: hourly, daily, weekly… depends on data provider

− Retrieves the metadata from the source portal(s).
− Support for a variety of interfaces and data formats:
− Responsive API that provides DCAT-AP and supports paging is preferred (e.g. RDF /

XML)

− Applies lightweight scripting-based transformation rules.
− Rules are written in JavaScript or XSLT.
− The final output is “DCAT-AP-compliant” RDF.
− The scripts can be managed externally (e.g. in Git) to ensure maintainability.

Processing and storing

Registry

Indexing

Translation

− Middleware and abstraction layer to interact with
the triple store (Virtuoso).

− RESTful interface for RDF (Turtle, JSON-LD, N-Triples, RDF/XML, Notation3).
− Application of URI schemata, generation of unique IDs and inter-linking.

− Responsible for managing the high-performance search index (Elasticsearch).
− “Flattening” of the DCAT RDF to simple JSON.
− Extracting literals from the data, e.g. from properties like title and description.
− Supports the use of existing and vocabularies and ontologies.

− Middleware to eTranslation
− Bundling literals from multiple datasets to an integrated request.
− Returns the translation by applying the native multi-language features of RDF.
− Translates description and title from datasets and distributions.

Quality evaluation

Validator

Annotator

Reporter

− Application of the W3C SHACL.
− Results include detailed information violations.
− Applied rules can also be extended or replaced (Built-in DCAT-AP).
− Accessibility tests on each linked distribution (the actual data).

− Quality assessment for each dataset with a custom metrics scheme.
− Inspired by the FAIR principles.
− Completeness of the metadata, evaluating the format and type of data, availability of

licensing information and linked distributions.

− Applies W3C Data Quality Vocabulary (DQV) for creating quality reports.
− Based on the results of the Validator and Annotator.
− Attached as RDF to the concerned dataset in the triplestore.
− Offers a variety of human-readable versions (PDF, XLS, ODS, HTML).

Identifier handling

• When harvesting, we always store the original identifier in dct:identifier

• For internal handling, we create an additional identifier

• A URIRef based on the original identifier (our baseURI + “normalised” identifier)

• If the new identifier already exists, we add an increment at the end

Pipeline in Detail

− A pipeline orchestration is described by a
descriptor: a plain JSON document.

− It includes list of segments, where each segment
describes a step aka a service.

− The descriptor is a compilation and self-contained
description of a data processing chain.

− Each microservice must expose an endpoint to
receive the descriptor and must be able to parse
and execute its content.

− Data itself can be embedded directly into the
descriptor or passed via a pointer to a separate data
store.

{

"header": {

"id": "70a1f83e-cfe1-4fce-8dd1-16a7139a42e0",

"name": "data-gov-uk",

"title": "Harvester - data.gov.uk",

"version": "2.0.0",

"context": "EDP2",

"transport": "payload"

},

"body": {

"segments": [

{

"header": {

"name": "importing-ckan",

"segmentNumber": 1,

"processed": false

},

"body": {

"endpoint": {

"address": "http://importer/pipe"

},

"config": {

"address": "https://data.gov.uk"

}

}

},

{

"header": {

"name": "transforming-js",

"segmentNumber": 2,

"processed": false

},

"body": {

"endpoint": {

"address": "http://transformer/pipe"

},

"config": {

"single": true,

"scriptType": "repository",

"repository": {

"uri": "https://example.com/transformation-scripts.git",

"script": "js/data-gov-uk-to-dcat-ap.js",

},

"params": {

"defaultLanguage": "en"

}

}

}

}

]

}

}

Meta-information

Segment 1

Segment 2

Software stack

• Reactive Java framework Vert.x and
employment of an asynchronous
programming paradigm

• DevOps-based Microservice approach

• Deployment via Docker and support for
container-orchestration like Kubernetes

• Virtuoso triple store a primary database
and Elasticsearch as search server

• Modern Single-Page-Application frontend
based on Vue.js

FUTURE DATA HARVESTING
PROCESSES
183 data catalogues on data.europa.eu

Future data harvesting process

• Add one more step to check for LDES metadata

• Reduce the harvesting to the new, updated and deleted datasets only

• Reduce the compute workload dramatically

• Offer more details about history of datasets

• First tests are ongoing for data.europa.eu with the help of DIGIT

• There will be more advantages than we now think of

THANK YOU
op-data-europa-eu@publications.europa.eu

mailto:op-data-europa-eu@publications.europa.eu

LDES @
Rijksmuseum

Tim Thomassen

t.thomassen@rijksmuseum.nl

Linked Data Event Streams at

30 April 2024

National museum of the Netherlands

Collection

~ 1.000.000 objects

~ 450.000 books

~ 800 meters of documentation

~ 17 terabyte of research data

Rijksmuseum

Collection
Management

System

Library
System

Document
Management

System

Agile methodology fast development cycles

Main focus of work data, code, infrastructure

Team
Role Appointment

Architect 1.6 fte Consultant

Data Engineer 1 fte Rijksmuseum, 0.4 fte Consultant

DevOps Engineer 1.9 fte Consultant

Infrastructure that connects systems and makes

data accessible

Integration Connect data from different domains

Standardisation Create predictable data services

Validation Guarantee data quality

Synchronisation Keep data up-to-date

Integration Layer

Integration Layer

Users

Systems
Rijksmuseum

System specific data structures and
communication protocols

Data Services managed by external web
design company

Standardisation current situation

Collection
Management

System

Website
Data

Services

- Modemuze (OAI-PMH)

- Europeana (OAI-PMH)

- KVVAK (JSON)

Aggregators

- Goal: Datahub for Colonial Heritage

- Use case for LDES

Against Opacity Datahub

System specific data structure and
communication protocols

Data Services managed by external web
design company

Usable due to following standards

- Standardised protocols (e.g. LDES)

- Standardised data structures (e.g. Linked Art)

The Rijksmuseum takes responsibility for
infrastructure

Standardisation future

Integration Layer

Collection
Management

System

Library
System

Document
Management

System

Website

Data Services

Transformation

Aggregators

Infrastructure as Code

servers integration layer are defined as code

Azure Cloud

servers managed by Microsoft

Continuous Deployment

changes are quickly and easily deployed on servers

Infrastructure as Code how

Microservices

software split into small parts

Docker Containers

software packaged so it can be easily deployed on

servers

Kubernetes Cluster

establish relations between parts, improve reliability and

make software scalable

Microservices Architecture how

• Common setup

o Webserver
o Database

• Multiple API configurations

Resolver Data Service Resolver Data Service

Change
Discovery

API

Resolving
API

LDES
API

Webserver Database

Demo

LDES Demo

The demonstrator(s)

Pieter Colpaert

Harvesting LDESs with DCAT-AP and cultural heritage data
using the same toolchain

Content

1. The Sweden publication PoC

Implementing a prototype static site Sweden DCAT-AP Feed from dumps

2. The Rijksmuseum publication

Implementing a feed for Rijksmuseum

3. The LDES client

4. Consumption pipelines

a. Sweden: Harvesting → validation pipeline

b. Sweden: Piveau/consus importer

c. Rijksmuseum: “Against Opacity” subsets

Sweden DCAT-AP feeds PoC

dump Dumps to Feed
To LDES search tree on

Github pages

Now also available as a generic component:
https://github.com/rdf-connect/dumps-to-feed-
processor-ts

https://admin.dataportal.se/all.rdf
https://github.com/pietercolpaert/DCAT-AP-Dumps-To-Feeds/blob/main/workflow-sweden.sh
https://www.pieter.pm/dcat/sweden/feed.ttl
https://www.pieter.pm/dcat/sweden/feed.ttl
https://github.com/rdf-connect/dumps-to-feed-processor-ts
https://github.com/rdf-connect/dumps-to-feed-processor-ts

Rijksmuseum

Instead of DCAT-AP, we’re exchanging data in the CIDOC domain, yet we also implemented activity streams with named

graphs here.

Internal SQL store

Internal Python script

LDES view

SQL

https://acc.data.rijksmuseum.nl/ldes/2024/4.json

The LDES client: a generic tool for harvesters

Get the LDES client in typescript from Github or NPM: rdf-connect/ldes-client

npx ldes-client https://www.pieter.pm/dcat/sweden/feed.ttl

npx ldes-client --basic-auth HIDDEN:FORNOW

https://acc.data.rijksmuseum.nl/ldes/collection.json

Replicates and always stays in-sync with the source

https://github.com/rdf-connect/ldes-client

Creating consumption pipelines using RDF Connect

1. While we’re harvesting, we can validate

2. Building a piveau/consus importer (a tool used by data.europa.eu)

3. Creating subsets of Rijksmuseum for “Against Opacity”

Validating

SHACL validator
using the DCAT-AP Feeds SHACL

shape

an LDES of SHACL
validation reports

LDES client
using Sweden LDES

https://semiceu.github.io/LDES-DCAT-AP-feeds/shape.ttl
https://semiceu.github.io/LDES-DCAT-AP-feeds/shape.ttl

<validation#Feed> a ldes:EventStream ;
ldes:timestampPath prov:generatedAtTime ;
tree:member <#1> , … .

<#1> a sh:ValidationResult;
prov:generatedAtTime "2024-04-26T16:50:01Z"^^xsd:dateTime ;
sh:focusNode <https://datakatalog.helsingborg.se/store/3/resource/476>;
sh:resultMessage "Value does not have datatype xsd:decimal";
sh:resultPath <http://www.w3.org/ns/dcat#byteSize>;
sh:resultSeverity sh:Violation;
sh:sourceConstraintComponent sh:DatatypeConstraintComponent;
sh:sourceShape [];
sh:value "2022-02-09"^^xsd:date .

The validation feed provides automated feedback to member states
on why certain datasets won’t show up in the European portal

Building our own consus importer for data.europa.eu

Consus can now work with the create, update, deletes given by the member states

The importer wraps the LDES client in a service that provides the data to piveau

https://github.com/rdf-connect/piveau-consus-importing-ldes

https://github.com/rdf-connect/piveau-consus-importing-ldes

Against Opacity Hub

Filtering on colonial heritage
Aggregated LDES for the

Against Opacity Hub

LDES client
using Rijksmuseum

LDES

LDES client
on future Cultural

Heritage feeds

Live demo in June? Join us online during the SEMIC2024 pre-conference!

https://semic2024.eu/registration/online-registration-form/

fin.

Your turn

Question time

Do you have quest ions
for any of our speaker?

Do you use LDES? tel l
us more!

Would LDES be
interest ing for you?

What do you want to
see in LDES’ future?

Next steps

An update to these and other LDES implementations
at SEMIC2024 on 26 June. Online attendance possible.

In September/October a LDES standardisation track will start. Digital
Flanders will organise a preparatory track until then.

Post issues and join the Working Group for the Track. Reach out to digit-

semic-team@ec.europa.eu

Thank you

Stay in

touch

https://joinup.ec.europa.eu/collection/interoperable-
europe/interoperable-europe

(@InteroperableEU) / Twitter

DIGIT-INTEROPERABILITY@ec.europa.eu

Interoperable Europe | LinkedIn

Interoperable Europe - YouTube

https://joinup.ec.europa.eu/collection/interoperable-europe/interoperable-europe
https://joinup.ec.europa.eu/collection/interoperable-europe/interoperable-europe
https://twitter.com/InteroperableEU
mailto:DIGIT-INTEROPERABILITY@ec.europa.eu
https://www.linkedin.com/in/interoperableeurope/
https://www.youtube.com/user/ISAprogramme

	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9: Digg – Myndigheten för digital förvaltning
	Slide 10: About us
	Slide 11: Agenda
	Slide 12: The Swedish dataportal
	Slide 13
	Slide 14: Three ways of harvesting data catalogs
	Slide 15: Business case for exploring LDES (Digg)
	Slide 16: What is all the fuss about harvesting?
	Slide 17
	Slide 18: Primary Harvesting (Data catalogs)
	Slide 19: Why DCAT-AP feeds (LDES)
	Slide 20: Implementation report (Sweden)
	Slide 21: Implementation report (Sweden)
	Slide 22: Future Issues
	Slide 23: Main headache
	Slide 24: Standardized harvesting report
	Slide 25: Secondary harvesting
	Slide 26: Backwards compatibility
	Slide 27: Thank you
	Slide 28: The DCAT-AP Feeds specification
	Slide 29: Timeline
	Slide 30: Timeline
	Slide 31
	Slide 32: Contents of the spec
	Slide 33: A DCAT-AP feed
	Slide 34: What triples do we upsert/remove?
	Slide 35: Indicating these objects are part of a feed
	Slide 36: What is part of one update?
	Slide 37: Entity types
	Slide 38: Which entities do we have?
	Slide 39: Adding some fields useful for LDES clients
	Slide 40: LDES supports retention policies
	Slide 41: Indicating we only keep the latest version
	Slide 42: Problem dumping this in one file is efficient for first-time replication, but not for synchronization
	Slide 43: Solution: a search tree
	Slide 44: Describing search trees using TREE relations
	Slide 45: SHACL shapes
	Slide 46: What we learned
	Slide 47: But most importantly
	Slide 48: Thanks!
	Slide 49
	Slide 50: Data.europa.eu - Linked data event stream
	Slide 51: Current Data harvesting Processes
	Slide 52
	Slide 53: Metadata retrieval
	Slide 54: Data acquisition
	Slide 55: Processing and storing
	Slide 56: Quality evaluation
	Slide 57: Identifier handling
	Slide 58: Pipeline in Detail
	Slide 59: Software stack
	Slide 60
	Slide 61: Future Data harvesting processes
	Slide 62: Future data harvesting process
	Slide 63: Thank you
	Slide 64
	Slide 65
	Slide 66: Rijksmuseum
	Slide 67: Team
	Slide 68: Integration Layer
	Slide 69: Standardisation current situation
	Slide 70: Aggregators
	Slide 71: Against Opacity Datahub
	Slide 72: Standardisation future
	Slide 73: Infrastructure as Code how
	Slide 74: Microservices Architecture how
	Slide 75: Resolver Data Service
	Slide 76: Demo
	Slide 77
	Slide 78
	Slide 79: The demonstrator(s)
	Slide 80: Content
	Slide 81: Sweden DCAT-AP feeds PoC
	Slide 82: Rijksmuseum
	Slide 83
	Slide 84: The LDES client: a generic tool for harvesters
	Slide 85: Creating consumption pipelines using RDF Connect
	Slide 86: Validating
	Slide 87: The validation feed provides automated feedback to member states on why certain datasets won’t show up in the European portal
	Slide 88: Building our own consus importer for data.europa.eu
	Slide 89: Against Opacity Hub
	Slide 90: fin.
	Slide 91
	Slide 92: Question time
	Slide 93
	Slide 94
	Slide 95

