

WP2

DIGIT B1 - EP Pilot Project 645

Deliverable 11: Design of the Method for Performing the Code Reviews for the

European Institutions

Specific contract n°226 under Framework Contract n° DI/07172 – ABCIII

 May 2016

DIGIT Fossa WP2 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 11: Design of the method for performing the code reviews for the European institutions

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights Page 2 of 57

Author:

Disclaimer

The information and views set out in this publication are those of the author(s) and do not necessarily

reflect the official opinion of the Commission. The content, conclusions and recommendations set out in

this publication are elaborated in the specific context of the EU – FOSSA project.

The Commission does not guarantee the accuracy of the data included in this study. All representations,

warranties, undertakings and guarantees relating to the report are excluded, particularly concerning – but

not limited to – the qualities of the assessed projects and products. Neither the Commission nor any person

acting on the Commission’s behalf may be held responsible for the use that may be made of the

information contained herein.

© European Union, 2016.

Reuse is authorised, without prejudice to the rights of the Commission and of the author(s), provided that

the source of the publication is acknowledged. The reuse policy of the European Commission is

implemented by a Decision of 12 December 2011.

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2011:330:0039:0042:EN:PDF

DIGIT Fossa WP2 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 11: Design of the method for performing the code reviews for the European institutions

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights Page 3 of 57

Contents

CONTENTS... 3

LIST OF TABLES ... 5

LIST OF FIGURES ... 6

ACRONYMS AND ABBREVIATIONS ... 7

1 INTRODUCTION .. 8

1.1. OBJECTIVE OF THIS DOCUMENT AND INTENDED AUDIENCE ... 8

1.2. SCOPE .. 8

1.3. DOCUMENT STRUCTURE .. 9

1.4. KEY SUCCESS FACTORS .. 9

1.5. DELIVERABLES .. 10

2 APPROACH ... 11

2.1. CODE REVIEW TOOLS .. 11

2.2. COMMUNICATION TOOLS .. 11

2.3. OPERATIONAL STAFF ... 12

3 METHODOLOGY ... 13

3.1. CODE REVIEW METHODOLOGY ... 13

3.1.1. Planning .. 14

3.1.1.1. Preparation ... 15

3.1.1.2. Test Design ... 17

3.1.1.3. Environment Configuration.. 18

3.1.2. Execution .. 19

3.1.2.1. Managed Mode ... 21

3.1.2.2. Defined Mode .. 22

3.1.2.3. Optimised Mode .. 23

3.1.3. Assessment .. 24

3.1.3.1. Technical Report Analysis... 26

3.1.3.2. Impact Analysis ... 27

3.1.3.3. Finding Prioritisation ... 30

3.1.4. Reporting .. 32

3.1.4.1. Report ... 33

3.1.4.2. Report Dissemination .. 34

3.1.4.3. Post-audit Support .. 35

3.2. PROJECT EFFORT PLANNING ... 36

DIGIT Fossa WP2 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 11: Design of the method for performing the code reviews for the European institutions

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights Page 4 of 57

3.3. RESPONSIBILITIES AND ASSIGNATIONS .. 37

3.4. TEST CATEGORIES .. 38

4 REFERENCES ... 43

5 ANNEXES .. 44

5.1. ANNEX 1: CONTROL CHECKLIST ... 44

5.1.1. Data/Input Management (DIM) ... 44

5.1.2. Authentication Controls (AUT) .. 45

5.1.3. Session Management (SMG) ... 45

5.1.4. Authorisation Management (ATS) .. 45

5.1.5. Cryptography (CPT) ... 45

5.1.6. Error Handling /Information Leakage (EHI) .. 45

5.1.7. Software Communications .. 46

5.1.8. Logging/Auditing (LOG) .. 46

5.1.9. Secure Code Design (SCD) ... 46

5.1.10. Optimised Mode Controls (OPT) .. 46

5.1.11. Specific JAVA Control Checklist (J*) .. 47

5.1.12. Specific PHP Control Checklist (P*) ... 47

5.2. ANNEX 2: FINAL REPORT STRUCTURE .. 48

5.2.1. Detailed Report ... 48

5.2.2. Executive Report .. 49

5.2.3. Communication Results Formatting ... 49

5.3. ANNEX 3: CODE REVIEW PROCEDURE .. 50

5.3.1. Planning Phase... 50

5.3.2. Execution Phase ... 52

5.3.3. Assessment Phase ... 56

5.3.4. Reporting Phase ... 56

DIGIT Fossa WP2 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 11: Design of the method for performing the code reviews for the European institutions

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights Page 5 of 57

List of Tables

Table 1: Code review tools ... 11

Table 2: Communication tools .. 11

Table 3: Participants .. 12

Table 4: Methodology – 1. Planning phase details .. 15

Table 5: Preparation details ... 16

Table 6: Test design details ... 18

Table 7: Environment configuration details .. 19

Table 8: Methodology – 2. Execution phase details ... 20

Table 9: Managed mode details ... 21

Table 10: Defined mode details ... 22

Table 11: Optimised mode details .. 24

Table 12: Methodology – 3. Assessment phase details ... 25

Table 13: Technical report analysis details .. 26

Table 14: Impact analysis details ... 27

Table 15: Threat, Vulnerability and Impact possible values ... 28

Table 16: Global risk evaluation ... 29

Table 17: Finding prioritisation details .. 30

Table 18: Methodology – 4. Reporting phase details ... 32

Table 19: Reporting details .. 34

Table 20: Report dissemination details .. 35

Table 21: Post-audit support details ... 36

Table 22: RACI matrix .. 37

Table 23: Basic CVRF elements .. 49

DIGIT Fossa WP2 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 11: Design of the method for performing the code reviews for the European institutions

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights Page 6 of 57

List of Figures

Figure 1: WP2 Tasks .. 9

Figure 2: Methodology phases ... 13

Figure 3: Test category control levels .. 14

Figure 4: Code review execution tasks order ... 21

Figure 5: Detailed control risk results (sample) .. 29

Figure 6: Checklist control risk results (sample) .. 29

Figure 7: Executive report finding indicators .. 31

Figure 8: Priority levels (sample) .. 32

Figure 9: Possible reporting channels .. 33

Figure 10: Project effort planning (sample) .. 37

Figure 11: Working Queues ... 53

Figure 12: Code Review Process ... 54

Figure 13: Structure of the Tables of the Support Document ... 55

DIGIT Fossa WP2 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 11: Design of the method for performing the code reviews for the European institutions

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights Page 7 of 57

 ACRONYMS AND ABBREVIATIONS

CVSS Common Vulnerability Scoring System

CWSS Common Weakness Scoring System

DDoS Distributed Denial of Service

DG Directorate General

DoS Denial of Service

EI European Institutions

EP European Parliament

FOSS Free and Open Source Software

FOSSA Free and Open Source Software Auditing

OS Operating System

SDLC System Development Life Cycle

SEO Search Engine Optimization

WP Work Package

API Application Programming Interface

DIGIT Fossa WP2 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 11: Design of the method for performing the code reviews for the European institutions

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights Page 8 of 57

1 INTRODUCTION

1.1. Objective of this Document and Intended Audience

This document represents the deliverable 11 included within TASK-08: Design of the method for performing

the code reviews for the European institutions.

The objective is to design a code review process to be used in the European Institutions, taking into

account the results obtained on TASK-06: “Requirement for the code reviews and their validity for the

European Institutions” and TASK-07: “Analysis of the methods for communicating the results of code

reviews, targeting their automated communication”.

The design will be done based on a close collaboration with the European institutions including, but not

limited to, document review and workshop validation.

1.2. Scope

To entirely understand the scope of the document, it is necessary to understand the aim of the Work

Package (WP) 2. The WP2 has four tasks:

 Task 6: Requirements for the code reviews that aim to define the list of requirements for proper

code reviews and their validity for the European Institutions, as well as to prepare an analysis of

how they fit into the working methods of the European Commission and the European Parliament.

 Task 7: Analysis of the methods for communicating the results of the code reviews, targeting their

automated communication.

Tasks 6 and 7 will provide the requirements that the methodology defined in task 8 needs to fulfil.

For this reason, deliverables 9 and 10 (output of tasks 6 and 7) are complementary.

 Task 8: Design of the code review process to be used in the European Institutions, taking into

account the requirements defined in tasks 6 and 7.

 Task 9: Feasibility study of the method defined to perform code review, to be used in the European

Institutions.

This is deliverable 11, the result of task 8, which covers the design and development of a code review

methodology to be used to analyse open-source solutions provided by FOSS communities and European

Institutions.

The selection of the tools that will be used for the code review and communication of the results have been

selected on previous tasks (Task-06 and Task-07).

DIGIT Fossa WP2 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 11: Design of the method for performing the code reviews for the European institutions

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights Page 9 of 57

Figure 1: WP2 Tasks

TASK-06: Requirement for the code
reviews and their validity for the

European Institutions

TASK-07: Analysis of the methods for
communicating the results of code
reviews, targeting their automated

communication

TASK-08: Design of the method for performing the code reviews for the European
Institutions

TASK-9: Feasibility study

1.3. Document Structure

This document consists of the following sections:

 Section 1: Introduction, which describes the objectives of this deliverable, intended audience and

Scope.

 Section 2: Approach, which describes the tools selected for the pilot, based on the requirements

established during Task-06 and Task-07.

 Section 3: Methodology, which defines the methodology to be followed on the code review

processes.

 Section 4: References.

 Section 5: Annexes.

1.4. Key Success Factors

The following factors are needed to ensure the success of this phase:

 Selection of an appropriate tool, or set of tools, that adequately cover the requisites set on Task-06

and Task-07.

 Definition of a detailed code review methodology that ensures that all the requisites are covered

and that it can be replicated easily by different teams or users.

 Definition of a robust validation process to ensure that any selection, methodology step or

requirement is reviewed and approved by the stakeholders in order to ensure that it covers their

needs.

DIGIT Fossa WP2 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 11: Design of the method for performing the code reviews for the European institutions

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights Page 10 of 57

1.5. Deliverables

1 Deliverable 9: List of requirements for code reviews

2 Deliverable 10: List of methods for communicating the results of code reviews

DIGIT Fossa WP2 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 11: Design of the method for performing the code reviews for the European institutions

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights Page 11 of 57

2 APPROACH

The approach followed on this methodology is based on the selection of one (or several) of the code review

tools filtered on Deliverable 9, as well as considering the methods for communicating the results of the

code reviews based on the tools identified on Deliverable 10. Therefore, the tools selected to be used to

define the steps to follow in the methodology will be fully compliant with the needs of the European

Institutions.

2.1. Code Review Tools

The following tools have been selected to be used as part of the methodology that is defined on the

following chapters. This choice has been made taking into account the results shown in Deliverable 9, and

is to be exclusively used on this pilot. It is not to be considered as an official nor general selection made

by the European Institutions.

Table 1: Code review tools

Tool Languages Coverage

VCG JAVA, PHP 77%

Yasca JAVA, PHP 69%

RIPS PHP 58%

FindBugs JAVA 54%

2.2. Communication Tools

In order to define the methods to be followed in order to ensure proper communication and dissemination

of the results of the code reviews, several additional, specific tools will also be selected and used.

These selections will be done taking into consideration the results obtained on Deliverable 10. As with the

previous case, the tools are selected exclusively for their use on this pilot. They are not to be

considered as an official nor general selection made by the European Institutions.

Table 2: Communication tools

Tool Characteristics

JIRA Used to distribute final report documents.

JoinUp Used to distribute final report documents.

JSReports Used to distribute the checks.

DIGIT Fossa WP2 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 11: Design of the method for performing the code reviews for the European institutions

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights Page 12 of 57

2.3. Operational Staff

In order to carry out these code reviews, the team that will be in charge will have to cover the following

skills in order to better execute the phases, tasks and activities that have been proposed on the

methodology and therefore present better results.

There will be several participants involved on a code review, each one having a specific set of

responsibilities, and their participation being related directly to very specific tasks. The groups considered

are:

Table 3: Participants

Participant Responsibilities

Stakeholders Define the scope of the code review.

 Validate final reports.

 Manage and support the post-audit phase.

Code review team Define the tests to be carried out.

 Configure and validate the environment to carry out the tests.

 Carry out the execution of the test cases.

 Generate the technical report including the results.

 Develop and evaluate the impact analysis of the findings.

 Provide an initial prioritisation and action plan.

 Provide post-audit support.

IT team Provide high-level detail of the application to audit.

 Provide the source code (if developed/maintained by them).

Developers Provide high-level detail of the application to audit.

 Provide the source code (if developed/maintained by them).

On the other hand, within these participant groups, there will be a set of roles that have been defined and

that have clearly listed their required skills and capabilities:

 Deep understanding of programming language, scripting language and other technologies used in

the application.

 Good Knowledge of the latest testing tools.

 Good understanding of HTTP communication if they are testing a web application.

 Knowledge of basic vulnerabilities.

 Good reporting skills.

 Teamwork, communication and documentation skills.

DIGIT Fossa WP2 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 11: Design of the method for performing the code reviews for the European institutions

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights Page 13 of 57

3 METHODOLOGY

This chapter will contain a detailed definition of the phases to be followed during a code review analysis,

the tasks to be carried out, and the procedure steps to achieve the objectives of these activities.

It has been divided into four sections:

 The first section will cover the code review methodology itself, defining all the phases, tasks and

activities that have to be carried out to finish the code review successfully.

 The second section will detail the test cases (controls) that are defined for each one of the

categories that are to be reviewed during the Execution Phase.

 The third section will detail the process to follow when a critical vulnerability is found on a third-

party solution, either being part of the code being reviewed, or being a support solution.

 The final section describes the reporting process of the methodology in greater detail, explaining

the steps to follow in order to communicate the results to the interested parties and generate the

appropriate reports.

3.1. Code Review Methodology

The code review methodology that is developed in this deliverable is summarized on the following structure

(see Figure 2), which covers all the phases from the initial definition of the code review process and up to

the post-audit support whenever required. Each one of these phases will be divided into several main tasks

that will summarize the main objectives of each phase, and which allows a better sorting of the activities

that have to be carried out by all the participants that will be involved in the project.

Figure 2: Methodology phases

Preparation Managed Mode Technical Report Report

Test Design

Defined Mode

Impact Analysis
 Report

Dissemination

Environment
Configuration

Optimised Mode

 Finding
Prioritisation

Post-audit

Planning Execution Assessment Reporting

DIGIT Fossa WP2 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 11: Design of the method for performing the code reviews for the European institutions

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights Page 14 of 57

For each one of these phases, a summary table containing the main description of their objectives, tasks,

expected results, constraints and dependencies is included. Now for each of the tasks defined for the

phases, a second table is defined to include its own specific objectives and expected results, followed by a

detailed description of the steps to be carried out by the code reviewers.

The estimated workload can be considered “static” for most phases and activities, with the exception of the

Execution ones, which will vary depending on the size of the code and the controls to review. This is clearly

mentioned in the corresponding activity detail tables.

On the execution phase, a set of controls will be verified by the code reviewers in order to properly analyse

the code and its security. The Checklist in “Annex 1” contains a detailed list of the controls to evaluate

within the categories described on this methodology (Section 3.24).

Figure 3: Test category control levels

As there are some controls that are language-specific, a third level of detailed controls is defined to include

them within a supplementary checklist, and which will be carried out within the controls included on the

detailed checklists (see Figure 3).

3.1.1. Planning

This stage will cover the information gathering activities that are required to start a code review analysis.

This is a necessary step in order to ensure that the proper tests and tools are selected, and that the

procedures can be properly optimised.

Therefore, initial basic information gathering activities will be carried out, as well as interviews with relevant

stakeholders that requested the code review. This in order to define the scope, objectives and constraints

of the project. Further on, a list of applicable test cases will be selected, taking into account the scope and

constraints defined beforehand, and the testing environment will be prepared to make sure that all selected

test cases can be carried out.

The following table consolidates the concepts that have to be covered in this phase:

Methodology test categories

Category
1

Category
2

Detailed checklist

Control 1

Control 2

Language-specific controls

Check 1 Check 2

DIGIT Fossa WP2 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 11: Design of the method for performing the code reviews for the European institutions

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights Page 15 of 57

Table 4: Methodology – 1. Planning phase details

Name Code review planning phase

Objectives

 Define the scope of the code review.

 Establish the specific needs of the source code.

 Obtain the necessary sponsorship within DIGIT.

 Select the applicable tests that will be carried out based on the language and the individual needs.

 Ensure that the selected tests cover all required security guidelines in use on the European Institution
that requested the code review.

 Prepare and configure the environment to allow the smooth execution of the tests that have been
selected for this specific source code.

Tasks

Preparation
Define the objectives, time limit, scope and any specific needs or requirements of the
source code.

Test design
Define the planning of the code review: tools to be used, applicable tests, execution
times, effort required, etc.

Environment
configuration

Prepare the environment and configure the tool in order to carry out the code review
analysis.

Expected results

- Agreement of the scope of the code review.

- Sponsorship by DIGIT.

- Distribution list (internal, restricted or public).

- Definition of the specific needs and requirements of the source code.

- Lists of applicable tests.

- Planning of the code review considering the applicable tests.

- Time and effort required to carry out the tests.

- Environment configured and ready to be used for the code review.

Dependencies Constraints Other considerations

There are no dependencies as
this is the first phase.

1. Need sponsorship within DIGIT.

2. The complete source code to be
reviewed must be available.

3. Restrictions defined by the
stakeholders.

N/A

3.1.1.1. Preparation

The first task that has to be carried out to prepare the code review includes the definition of

the scope and specific objectives for it. At this point, any constraints (time, resources, code

availability…) will be identified to be taken into account into later stages.

The participation of the stakeholders that requested the code review is fundamental; however

the IT teams’ or open-source developer communities’ assistance at this point will be optional,

depending on the type of code to review.

DIGIT Fossa WP2 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 11: Design of the method for performing the code reviews for the European institutions

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights Page 16 of 57

Table 5: Preparation details

Name Code review preparation Estimated workload

Responsible Code review project leader 3 days

Participants

Stakeholders (requesters of the code review)

IT team in charge of the solution

Open-source developers’ communities

Tools N/A

Validation Expected results Exceptions

Done by stakeholders
before proceeding to the
next phase.

- Scope defined.

- DIGIT sponsorship obtained.

- Specific needs identified.

- High-level time estimation.

The participation of the IT
team and communities is
optional.

Steps to be carried out

The following activities will be carried out during this task by the different parties involved:

 Define the scope of the code review project.

o Timeframe and delivery dates.

o Code to review (name or identifier).

o Amount of code (Nº lines, at least an approximate value).

 Establish the owner (stakeholder) of the code review request, which will be informed

of any changes and will participate on all the follow-up and validation sessions.

o Stakeholder, or stakeholders, in charge or the project.

o Contacts of the IT team, communities or developers of the solution.

 Procure DIGIT sponsorship for the code review.

o Establish a stakeholder responsible for all the logistics and communication

coordination activities related to the code review.

 Establish the distribution list and communication channels:

o People to include in the communications.

o Visibility of the results:

 Internal: DIGIT and EU Institutions only.

 Restricted: DIGIT, EU Institutions and FOSS communities.

 Public: available to the general public.

 Define the times for the developers to fix the issues found, and what steps to take if

there are not fixed, or the developers refuse to take care of them.

 Define if critical findings identified during the assessment phase are to be

communicated earlier:

o If they are critical and have not been reported earlier (ex. in CVEs), it is

recommended to communicate them immediately to all parties specified in

the scope (will require DIGIT contact stakeholder approval).

DIGIT Fossa WP2 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 11: Design of the method for performing the code reviews for the European institutions

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights Page 17 of 57

o If they are critical but are already known, they can be reported internally

before the final report is provided if DIGIT indicates it so.

o Under DIGIT’s decision, it is also possible to not provide any critical

communications before the final report is provided.

 Define the code review basic characteristics, including:

o Programming language of the code.

o Amount of code to be reviewed (Nº lines, exact amount).

o Objective of the review (security check, bug/vulnerability detection…).

 Define the advanced characteristics of the source code to review.

o Establish the applicable Defined Verification Level. Possible options are:

 Level 1 - Opportunistic

 Level 2 - Standard

 Level 3 - Advanced

o Architecture (high-level functional design) of the application to review.

o Third-party libraries implemented within the code.

 Define any specific requirements that need to be covered during the code review by

analysing the structure, dependencies and characteristics of the solution.

o Third-party external services/solutions required.

o Interfaces, plugins or extensions to include.

o Specific configuration parameters.

 Generate an initial time and effort estimation, at a high-level.

o Working days required.

o Personnel required.

o Specific skills or capabilities required.

o High-level code review execution plan.

3.1.1.2. Test Design

Before starting this task, it is necessary to properly define the scope, objectives and

constraints, as otherwise the test case selection will be inefficient and incomplete. Also,

before reviewing applicable tests, the applicable tool has to be selected if there is more than

one possibility.

Therefore, applicable test cases will be selected from the full checklists that are available for

the code reviews (general checklist and specific language checklists), taking into account the

scope and objectives that have been established.

If there are constraints defined that may affect the tests (time, resources, hardware…), the

applicable test cases will have to be prioritised in order to select those that are most relevant

for the code review.

DIGIT Fossa WP2 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 11: Design of the method for performing the code reviews for the European institutions

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights Page 18 of 57

Table 6: Test design details

Name Code review test design Estimated workload

Responsible Code review team 1 day

Participants N/A

Tools N/A

Validation Expected results Exceptions

Revised by the code
review project leader.

- Solution to be used.

- List of test cases to run.

- Configuration of the tests

- List of discarded tests,
including justification.

Ignore tests that do not
apply.

Select only a part of the
applicable tests depending
on the constraints.

Steps to be carried out

The following activities will be carried out during this task:

 Identify the code review solution to be used considering the language of the source

code to be reviewed, specific requirements set during the previous phase, and the

scope, objectives and constraints of the project.

o Selection of the tool, or tools needed.

o Plugins/extensions that provide needed features for the code review.

 Select the requirements that will have to be carried out in order to comply with the

scope and objectives of the code review.

o Generate a list of applicable test cases from all available ones (general and

language-specific checklists).

o Selection of those cases that cover the scope and the Defined Verification

Level established during the previous task.

o If there are Internal Security Guidelines in effect, it will be necessary to

include test cases to cover their requirements.

o List of ignored test cases, including justification for their exclusion.

 Establish a planning of the activities to carry out, including a time and effort

estimation of each one of them.

o Detailed execution plan including the tests to be carried out, including the

list, order and expected time required to carry out the tests defined on this

part, as well as the resources (users) needed for this.

3.1.1.3. Environment Configuration

The final task of this phase covers the need to prepare the environment where the code

review will be carried out. This includes the need to install, configure and prepare all the tools

that are going to be used, and ensure that any specific, non-standard libraries, services or

extensions are readily available for the code review.

DIGIT Fossa WP2 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 11: Design of the method for performing the code reviews for the European institutions

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights Page 19 of 57

It is recommended to have these tools fully configured before starting the code review to

avoid unexpected delays or issues later on due to the tools not being ready or not covering

specific needs that had been previously identified.

Table 7: Environment configuration details

Name Code review environment configuration Estimated workload

Responsible Code review team 1 day

Participants N/A

Tools

FindBugs *

RIPS *

VCG *

Yasca *

Validation Expected results Exceptions

Revised by the code
review project leader.

- Environment configured for
the code review.

N/A

* Only those selected on the previous phase.

Steps to be carried out

The following activities will be carried out during this task:

 Determine the environment and solution needs taking into consideration the details

of the project and the selected test cases:

o Identify any hardware or software needs specific to this code review and

install them accordingly.

o Ensure that the environment is properly configured to protect the privacy of

the code review process and of the code reviewed.

 Install/deploy the software tools to be used:

o Deploy the tools on the prepared environment.

o Configure the tool taking into account the specific needs of this code review.

 Install/apply any needed extension or plug-in:

o Install and configure the plugins and extensions needed to cover the

selected test cases.

o Configure the plugins to allow their proper execution.

3.1.2. Execution

This stage will cover the execution of all the test cases that have been included for this code review,

considering the scope, objectives and constraints. At this point, the execution will be done by the selected

team, carrying both automated and manual test where necessary.

The following table consolidates the concepts that have to be covered in this phase:

DIGIT Fossa WP2 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 11: Design of the method for performing the code reviews for the European institutions

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights Page 20 of 57

Table 8: Methodology – 2. Execution phase details

Name Code review execution phase

Objectives

 Execute the selection of test cases applicable for this code review, including both automated and

manual tests.

 Identify weak points or sections that require further testing.

 Carry out optimised tests to evaluate weak points discovered or hard-to-detect vulnerabilities.

 Collect the execution results of these test cases.

Tasks

Managed mode

Execution of the test cases using automated tools that will provide initial results and

known weaknesses/vulnerabilities, as well as serving as a starting point for the other

more manual-oriented tasks.

Defined mode
Comprises all tests that will be carried out also manually due to their nature, or those

that require active supervision by a technician.

Optimised mode
Includes all test conducted in Managed mode but focused to the software

architecture and unique peculiarities of the code.

Expected results

- List of results from the automated tools.

- List of identified vulnerabilities, bugs and security weaknesses.

- Summary of each issue identified.

- Technical detailed information on each one of the issues identified.

Dependencies Constraints Other considerations

Requires a list of the test cases

to be executed.

The environment needs to be

ready for the code review.

The code to be reviewed needs

to be fully available.

Team requirements need to be

covered.

Time and resource requirements

need to be taken into account.

N/A

Therefore, the steps to carry out have been divided into three consecutive tasks, each one providing further

information and scope refining, allowing for a more in-depth analysis of the most critical sections of the

code, as well as allowing the review of the vulnerabilities and weaknesses found. For this reason, the initial

task focuses on the use of automated tools, while the second and third tasks shift towards the manual

review of the findings.

Additionally, any bugs, vulnerabilities or typos discovered by the code reviewer that are not related with

security, nor within the scope of the project, will be included in the conclusions section, citing them in a list

format in order to allow the developers to be aware of them, assess them and fix if they consider it

appropriate.

DIGIT Fossa WP2 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 11: Design of the method for performing the code reviews for the European institutions

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights Page 21 of 57

Figure 4: Code review execution tasks order

As can be observed in Figure 4, each one of the tasks of this phase is used as a starting point from the

next one, complementing the results with each new phase until the end of the execution task.

3.1.2.1. Managed Mode

Automated tools will be used on this task to review those selected test cases that can be

carried out with them, having minimal user intervention. The code review team will be in

charge of the supervision of the analysis to verify it is working correctly and ensure that it

generates the results accordingly.

Table 9: Managed mode details

Name Code review managed mode execution Estimated workload

Responsible Code review team 50,000 lines per day

Participants N/A

Tools

FindBugs *

RIPS *

VCG *

Yasca *

Validation Expected results Exceptions

Revised by the code
review project leader.

- Reports of the automated
tools including weaknesses,
vulnerabilities and bugs.

N/A

* Only those selected on the previous phase.

Steps to be carried out

The activities that will be carried out during this task are mostly automated, requiring only

limited user intervention, and include both passive and active checks. It will be able to cover a

partial amount of the test cases that have been defined:

Managed mode

Tests using
automated tools

Defined mode

Manual tests to
verify and expand
the results

Optimised mode

Manual tests to
evaluate specific
scenarios

DIGIT Fossa WP2 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 11: Design of the method for performing the code reviews for the European institutions

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights Page 22 of 57

 Data/Input Management.

 Authentication Controls.

 Session Management.

 Authorization Management.

 Cryptography.

 Error Handling/Information Leakage.

 Logging/Auditing.

 Secure Code Design.

 Specific JAVA and PHP Controls.

The test cases contained in this phase are described in Section 3.4, therefore the tools will

have to be configured to carry out the tests that are included within the scope of the project.

These tools will generate a report with the results automatically. This will serve as a starting

point for the next tasks (defined and optimised modes).

3.1.2.2. Defined Mode

The next task will take as an input the objectives and scope of the code review, alongside the

results from the previous task (Managed mode). All these controls are reviewed manually

(some test may be done using automated tools), focusing on those sections of the source

code that have been identified as possible weak spots in order to perform a deep-level code

review.

Table 10: Defined mode details

Name Code review defined mode execution Estimated workload

Responsible Code review team 0,5h per control

Participants N/A

Tools Eclipse (or similar development environment)

Validation Expected results Exceptions

Revised by the code
review project leader.

- Detailed list of weaknesses,
vulnerabilities and bugs.

- Initial technical report of the
findings.

- Test options to configure the
optimised mode execution.

N/A

Steps to be carried out

The activities that will be carried out during this task are mostly manual and include both

passive and active checks. The objective is to review each one of the following categories

(considering only those included on the scope) and validate the results provided by the

automated tools, further analysing any points that require more detail.

DIGIT Fossa WP2 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 11: Design of the method for performing the code reviews for the European institutions

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights Page 23 of 57

The description and breakdown of each one of these categories can be found in Section 3.2.

 Data/Input Management.

 Authentication Controls.

 Session Management.

 Authorization Management.

 Cryptography.

 Error Handling/Information Leakage.

 Logging/Auditing.

 Secure Code Design.

 Specific JAVA and PHP Controls.

During this stage, it is necessary to start to write the final report where the results will be

contained. This report will include the sections defined on Annex 3.

For each control tested, it is necessary to complete its corresponding control table of the

report, which contains the description and test process steps. The fields to complete are:

 Checks: indicate if the checks have been successful (), have failed (X) or are not

applicable (NA).

 Results: detail any findings or information that validate the results provided to the

test steps of the control.

 Evidences: include any additional evidence deemed necessary to justify the results.

The Threat, Vulnerability and Impact values do not need to be completed yet, as this will be

done on the assessment phase.

3.1.2.3. Optimised Mode

This task will take as input the results of the managed and defined modes, in order to

establish those categories or areas that require further testing as they are deemed as at risk

of containing more complex weaknesses, vulnerabilities or hard-to-find bugs.

DIGIT Fossa WP2 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 11: Design of the method for performing the code reviews for the European institutions

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights Page 24 of 57

Table 11: Optimised mode details

Name Code review optimised mode execution Estimated workload

Responsible Code review team 1h per control

Participants N/A

Tools Eclipse (or similar development environment)

Validation Expected results Exceptions

Revised by the code
review project leader.

- Detailed list of weaknesses,
vulnerabilities and bugs.

- Detailed technical report of
the findings.

N/A

Steps to be carried out

The activities that will be carried out during this task are mostly manual and include both

passive and active checks:

 Check those categories from the Defined Mode or Managed Mode which require

manual validation or further evaluation.

Execute additional tests that are not covered on the previous categories, including:

 Concurrency (thread management).

 Evaluate possible Denial-of-Service (DoS) and Distributed Denial-of-Service (DDoS)

weaknesses.

 Evaluate the Memory management processes (files, buffers, connections, sensitive

information contained in variables, etc.).

 Analyse the Resource management processes (resource release, access control,

temporary resources’ management, etc.).

 Analyse the management of multiple calls to the same process, API or internal

function.

 Review the Role/Privilege matrix (determine if it has a proper design, structure and

assignation – outside of the code itself).

The results from this task will also be included on the report, following the same steps as the

ones indicated on the Defined Mode task.

3.1.3. Assessment

This phase covers the analysis and evaluation of the findings identified on the code reviewed via the

managed, defined and optimised modes. This will require the evaluation of the technical report and the

details of each weakness, vulnerability or bug found, as well as the execution of an impact analysis activity

to define the risk posed by each finding. Finally, taking into account the results of the impact analysis, the

findings will be prioritised in order to easily identify those that should be fixed first.

The following table consolidates the concepts that will be covered in this phase:

DIGIT Fossa WP2 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 11: Design of the method for performing the code reviews for the European institutions

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights Page 25 of 57

Table 12: Methodology – 3. Assessment phase details

Name Source code review results’ assessment

Objectives

 Carry out an evaluation of the issues found on the previous stage (Managed, defined and optimised

modes) in order to identify their properties and their details.

 Carry out an impact analysis that will allow the definition of the risk posed by each one of the findings.

 Prioritise the findings in order to highlight those that pose a more critical risk for the code solution and

provide a recommended fix order for all the findings.

Tasks

Technical report

analysis

Analysis of the results from the previous phase (contained on the detailed technical

report) in order to determine their characteristics and possible solutions. At this point,

these initial results could be shared with the communities to promote their own

evaluations.

Impact analysis

Evaluation of the findings of the code review in order to determine their Threat,

Vulnerability and Impact. At this point, a custom variant of a standardised score

methodology, such as CVSS (v3) or CWSS will be used.

Finding

prioritisation

Classify the findings found based on the results of the previous impact analysis,

considering the risk they pose to the solution reviewed. Provide an action plan

sorting the findings and their solutions based on this classification.

Expected results

- Technical detailed report of the vulnerabilities, bugs and possible security weaknesses found.

- Analysis report of the findings and issues found on the code review.

- Evaluation and scoring of the findings based on their Threat, Vulnerability and Impact.

- Action plan including a prioritisation of the findings.

Dependencies Constraints Other considerations

Results from the execution

phase, containing detailed

information of each issue found.

Execution reports from the

previous phase, including the

technical detailed report.

N/A

In order to evaluate the impact of the findings of the code review analysis a series of indicators will have to

be taken into account. It is important to consider that these indicators will help to determine the final scoring

of the vulnerabilities/weaknesses.

 Threat: focuses on those factors that are directly related with the attack vector, and more

specifically the probability that the attacker (either intentionally or unintentionally) manages to

successfully take advantage of the issue.

 Vulnerability: those details specifically related to the vulnerability itself, focusing on the chance of

its discovery and/or exploitation.

 Impact: it is centred on the common security concepts (confidentiality, integrity and availability)

and how the issue identified affects them.

If the vulnerability has not been discovered yet, it can be considered for submission to be scored as a

CVSS or CWSS depending on its impact and effect.

DIGIT Fossa WP2 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 11: Design of the method for performing the code reviews for the European institutions

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights Page 26 of 57

3.1.3.1. Technical Report Analysis

The first task focuses on the analysis of the detailed technical report generated on the

previous phase, in order to determine the specific vulnerabilities found, their details and their

possible mitigation or solution actions that should be followed. In this task, the findings will be

classified based exclusively on their category.

Table 13: Technical report analysis details

Name Technical report analysis Estimated workload

Responsible Code review team 3 days

Participants N/A

Tools N/A

Validation Expected results Exceptions

Revised by the code
review project leader.

- Detailed review of the
findings of the execution.

- Classification of the findings
based on their category.

N/A

Steps to be carried out

The following activities will be carried out during this task:

 Analyse and review the findings of the code review contained on the initial technical

report generated on the previous phase:

o Discard any false positives.

o Assess the relevance of the findings.

o Assign risk scores based on the confidentiality, integrity and availability of

the data managed by the application.

o Group the findings into their corresponding controls.

o Sort the controls and findings into their respective categories.

 Review the content of each control and finding and complete any missing

information, including but not limited to description, characteristics, technical details

and evidences.

 Evaluate and generate possible solutions for the findings in each one of the controls,

at high level:

o General recommendations.

o Mitigation actions.

o Solutions and fixes.

 Transfer the findings, once they are grouped and sorted, into the checklists, filling all

the fields with the exception of the risk.

DIGIT Fossa WP2 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 11: Design of the method for performing the code reviews for the European institutions

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights Page 27 of 57

3.1.3.2. Impact Analysis

Once the findings have been properly documented and classified (based on their category),

the next task covers the need to determine their Threat, Vulnerability and Impact. This

analysis is done from the point of view of the needs and structure of the client. Industry

standards will be used to determine the vulnerability level of the risks found on the code

review.

Table 14: Impact analysis details

Name Impact analysis Estimated workload

Responsible Code review team 2 days

Participants N/A

Tools N/A

Validation Expected results Exceptions

Revised by the code
review project leader.

- Detailed impact analysis of
each one of the findings
including scoring.

- Classification of the findings
based on their score.

N/A

Steps to be carried out

The following activities will be carried out during this task:

 Evaluate the sorted findings to determine the risk they pose.

o From a high-level point of view, considering the controls as individual

findings.

o Refining the analysis of each control, reviewing each one of their

occurrences.

 Determine the severity of the issue by calculating the risk value of the Threat,

Vulnerability and Impact factors.

DIGIT Fossa WP2 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 11: Design of the method for performing the code reviews for the European institutions

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights Page 28 of 57

Table 15: Threat, Vulnerability and Impact possible values

Factors Values

T
h

re
a
t

Skill required (1) Advanced intrusion and exploitation skills

(2) Advanced computer coding and network skills

(4) Advanced computing skills

(6) Technical knowledge

(9) No specific knowledge

Opportunity (1) Full access or expensive resources needed

(5) Special access or specific resources needed

(7) Limited access or standard resources needed

(9) No access or resources needed

Dimension (2) Administrators or developers

(4) Internal users/partners

(6) Authenticated users

(9) Anonymous users

V
u

ln
e
ra

b
il
it

y

Ease of

discovery

(1) Very hard

(3) Hard

(7) Easy

(9) Discoverable with automated tools

Ease of

exploitation

(1) Theoretical

(3) Hard

(5) Easy

(9) Exploitable with automated tools

Awareness (1) Unknown

(4) Hidden

(7) Obvious

(9) Publicly known

Im
p

a
c
t

Confidentiality (2) Low amount of non-sensitive data leaked

(6) Low amount of critical data leaked

(6) Large amount of non-sensitive data leaked

(7) Large amount of critical data compromised

(9) All data (non-sensitive and critical) leaked

Integrity (1) Low amount of data partially corrupted

(3) Low amount of data severely corrupted

(5) Large amount of data partially corrupted

(7) Large amount of data severely corrupted

(9) All data severely corrupted

Availability (1) Few secondary services/functions affected

(5) Few primary services/functions affected

(5) Multiple secondary services/functions affected

(7) Multiple primary services/functions affected

(9) All services/functions affected

DIGIT Fossa WP2 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 11: Design of the method for performing the code reviews for the European institutions

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights Page 29 of 57

 Evaluation of the scores obtained for the Threat, Vulnerability and Impact of each

issue, considering the following scale conversion:

0 to 3: Low 3 to 6: Medium 6 to 9: High

These results will be included on the detailed control tables that are part of the final

report.

Figure 5: Detailed control risk results (sample)

Threat High (7)

Vulnerability Medium (4)

Impact Low (1)

 Finally, the checklist will be completed adding the global risk posed by the controls,

which is usually calculated from the individual results (Threat, Vulnerability and

Impact). Table 16 shows how to calculate the global risk taking into consideration the

Impact and the probability (Average value of both Threat and Vulnerability results).

Table 16: Global risk evaluation

Impact

High Medium High Critical

Medium Low Medium High

Low Info Low Medium

 Low Medium High

 Probability (Avg. Threat & Vulnerability)

The possible values are Critical, High, Medium, Low or Info if an issue has been

found (X); or empty if no issues were found (), or the control is not applicable (NA).

Figure 6: Checklist control risk results (sample)

ID Control Result

<id> <control_name> X Critical

DIGIT Fossa WP2 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 11: Design of the method for performing the code reviews for the European institutions

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights Page 30 of 57

 At this point, there is a particular situation that can occur if a critical and unknown

vulnerability is found, as it is of the highest interest to inform all relevant parties

involved in order to ensure that it can be fixed in a timely manner.

This would require the code reviewer to inform the stakeholder in charge of the

finding, and communicate this finding via specific channels; as long as this has been

agreed upon on the planning phase.

Three possible scenarios appear:

o If the solution is being developed, or maintained, internally, then it is only

necessary to inform the relevant stakeholders and provide them with the

vulnerability information before continuing with the assessment.

o If the solution is being distributed by an external party, and within the scope

of the project, the relevant developers will be provided with the information of

the vulnerability as long as this communication is approved by the

stakeholders in charge of the code review.

o If the solution is being distributed by an external party, that is not within

scope of the project, then the decision on whether providing the information

early (before the final report) to these developers will fall on the stakeholders

in charge of the code review.

3.1.3.3. Finding Prioritisation

Finally, once the impact analysis is finalised, and all the findings are scored taking into

consideration their Threat, Vulnerability and Impact scores, an action plan is then designed to

establish the recommended order in which they should be fixed.

Table 17: Finding prioritisation details

Name Finding prioritisation Estimated workload

Responsible Code review team 2 days

Participants N/A

Tools N/A

Validation Expected results Exceptions

Revised by the code

review project leader.

- Prioritisation of the findings

based on their impact score.

- Action plan detailing the order

in which to address the

findings.

N/A

DIGIT Fossa WP2 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 11: Design of the method for performing the code reviews for the European institutions

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights Page 31 of 57

Steps to be carried out

The following activities will be carried out during this task:

 Grouping of the findings found based on their global value, including breakdowns of

their separate Threat, Vulnerability and Impact scores. These results are displayed

on an executive indicator report that summarizes the result:

o Bar graph showing the number of findings and their severity.

o For each severity level, a pie chart showing the breakdown of the impact

(Confidentiality, Integrity and Availability) risk level values.

Figure 7: Executive report finding indicators

 ■ Confidentiality ■ Integrity ■ Availability

 Prioritisation of the findings in order to define an action plan, taking into consideration

the scoring results of each finding.

o Classification of the findings based on their global risk score.

o Classification of the findings based on their category and the Threat, Impact

and Vulnerability results.

 Define an action plan that includes the steps and actions needed to mitigate and/or

fix the findings.

o Main action plan considering all findings.

0

2

4

6

8

Critical High Medium Low Info

DIGIT Fossa WP2 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 11: Design of the method for performing the code reviews for the European institutions

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights Page 32 of 57

Figure 8: Priority levels (sample)

 If required by the stakeholder, and it has been included and foreseen in the code

review planning phase, it is also possible to include individual action plans per

category, module affected or similar.

3.1.4. Reporting

This final phase covers the reporting of the results to the stakeholders, providing the conclusions,

recommendations and action plans defined on the previous phases. Furthermore, an optional task has

been included to carry out post-audit verifications to ensure that the findings have been mitigated and/or

solved properly.

The following table consolidates the concepts to cover in this phase:

Table 18: Methodology – 4. Reporting phase details

Name Source code review reporting

Objectives

 Communicate the results to all parties included within the scope of this code review, as well as any

communities or developers that are considered relevant if critical vulnerabilities are found.

 Develop the final executive and detailed technical reports taking into consideration the results,

recommendations and conclusions obtained on the previous phases of the code review.

 Validate these reports with the stakeholders in charge of the reports to ensure that they comply with

the scope and objectives set for the analysis.

 Provide post-audit support for the implementation and verification of the solutions and mitigation

actions recommended on the final reports to fix the findings identified.

Tasks

Report
Develop the final executive summary and final detailed technical report including all

the results, recommendations and conclusions of the code review.

Report

dissemination

Disseminate the final reports to the selected recipients (as indicated on the scope of

the project). If applicable, communicate the results to external communities, third-

parties or the general public.

Post-audit

support

Provide support during the implementation of the recommendations, solutions and

mitigation actions proposed on the final report.

Expected results

- Final executive summary.

- Final detailed technical report.

- Disseminated communications to the parties in scope.

- Action plan to manage the post-audit solution/mitigation implementation support.

Short-term

•Critical

•High

Mid-term

• Medium

Long-term

•Low

•Info

DIGIT Fossa WP2 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 11: Design of the method for performing the code reviews for the European institutions

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights Page 33 of 57

Dependencies Constraints Other considerations

Assessment results, finding

prioritisation action plan and

detailed recommendations.

Detailed technical report

including all the findings obtained

during the Execution phase.

N/A N/A

The following diagram (Figure 9) represents the different communication channels that are considered for

the distribution of the reports and checks, in accordance with the requirements set on Deliverable 10 and

detailed further on in the next sub-sections.

Figure 9: Possible reporting channels

As it can be observed on the diagram, the results of the code review will be reported in two main

documentation groups: final report documents and checks. At the same time, the final report documents

will be published using the selected tool and, if defined on the scope, sent via e-mail to relevant

stakeholders or key personnel.

3.1.4.1. Report

The main focus of this task is to develop the final reports that will be handled as a result of the

code review carried out. Two reports will be generated; one from a high-level point of view,

containing an executive summary and an overview of the findings, planning and

recommendations, and a second one containing detailed descriptions and recommendations

for each one of the findings identified.

Public

Restricted

Internal

Code Review
Results

Checks

Check
Distribution

Final Report

Publication

Direct

E-mail

DIGIT Fossa WP2 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 11: Design of the method for performing the code reviews for the European institutions

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights Page 34 of 57

Table 19: Reporting details

Name Code review reporting Estimated workload

Responsible Code review team 3 days

Participants Stakeholders

Tools N/A

Validation Expected results Exceptions

Revised by the code

review project leader.

Reviewed and validated

by the stakeholders.

- Final executive summary.

- Final detailed technical

report.

N/A

Steps to be carried out

The following activities will be carried out during this task:

 Distribute the findings of the code review process using the tools indicated on

Section 2.2.

 Develop the reports to be shared with the stakeholders as a conclusion of the code

review:

o High-level executive summary, following the structure provided in Annex 3 of

this document, including a high-level summary and an overview of the code

review findings.

o Detailed technical report, following the structure provided in Annex 3 of this

document. It has to include all the results obtained on the code review,

including the results, mitigation actions and fixes.

 Develop a set of specific recommendations related to the findings and mitigation

actions/fixes.

 Include the action plan defined on the previous phase, taking into consideration the

recommendations and any changes that should be considered.

 Generate the final documents and send them to the stakeholders for validation.

 Review the stakeholders’ comments and update the document where necessary.

 Distribute the final report to the stakeholders and any other community or third party

identified on the start of the code review project.

3.1.4.2. Report Dissemination

Once the final reports are validated, they will be distributed among the agreed recipients,

which can include internal staff, communities or general public. By default, both the final

report documents and the results are distributed. The means of distribution have already been

described on Figure 9, and may include sending the final report documents via e-mail to

relevant or critical stakeholders and key personnel.

DIGIT Fossa WP2 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 11: Design of the method for performing the code reviews for the European institutions

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights Page 35 of 57

Table 20: Report dissemination details

Name Report dissemination Estimated workload

Responsible Stakeholders 2 days

Participants N/A

Tools
JIRA / JoinUp (final report documents)

JSReports (checks)

Validation Expected results Exceptions

N/A - Results and reports

communicated to all agreed

third parties/communities.

N/A

Steps to be carried out

The following activities will be carried out during this task:

 Distribution of the final report documents to all parties included within the scope of

the code review:

o Publication of the document on the tool selected, and distribution of the

access link or awareness communications to inform the parties of the

publication.

o Sending the documents via e-mail to relevant or critical stakeholders and

key personnel, but only for cases previously agreed during the planning

stage of the code review.

 Communication of the results from the code review findings, using the tool selected

on the previous deliverable.

o Inform the parties within scope of the publication of the results.

o Verify that intended recipients have access to the platform with the

published checks.

o For cases where public access has been included within scope, consider

including an external front-end to allow information visualization to facilitate

the access to the information.

3.1.4.3. Post-audit Support

This optional task is designed to provide support for the verification of the correct

implementation of the recommendations proposed on the final report, ensuring that the issues

and findings are properly fixed. This requires a faster, to-the-point code review.

DIGIT Fossa WP2 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 11: Design of the method for performing the code reviews for the European institutions

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights Page 36 of 57

Table 21: Post-audit support details

Name Code review post-audit support Estimated workload

Responsible Code review team # required days

Participants Stakeholders

Tools N/A

Validation Expected results Exceptions

Revised by the code

review project leader.

Reviewed and validated

by the stakeholders.

- Final executive summary.

- Final detailed technical

report.

N/A

Steps to be carried out

The following activities will be carried out during this task:

 Participate in any follow-up activities designed and carried out in order to solve the

findings of the code review:

o Recommendation implementation support, both during the design, coding

and implementation phases.

o Establishment of deadlines for solving the findings (developers).

o If developers are unwilling/unavailable, the stakeholders will have to select

who is going to carry out and distribute the fixes.

o Validation of the correct implementation of the recommendations.

 Verification of the correct solution of the findings:

o Carry out the corresponding controls and tests to ensure that the findings

have been fixed correctly.

3.2. Project effort planning

The time to carry out the project will vary depending on the code to be reviewed and the controls selected

for the code review. A sample effort planning can be seen in Figure 10; for this sample maximum times

have been considered (all controls tested for general and language specific categories).

DIGIT Fossa WP2 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 11: Design of the method for performing the code reviews for the European institutions

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights Page 37 of 57

Figure 10: Project effort planning (sample)

3.3. Responsibilities and assignations

The roles defined on Section 2.3 do not participate in each phase. Instead, their participation is focused on

those sections where they can provide support, information or needed data. Table 22 contains a list of the

main phases, and their sub-phases, of the methodology, determining the task each participant has to carry

out.

Table 22: RACI matrix

PHASE DAYS

PARTICIPANTS

Code review
team

Stakeholders IT team Developers

Planning 5

Preparation 3 R A C C

Test Design 1 AR I C C

Environment Configuration 1 AR I -- --

Execution 13*

Managed Mode 4* AR -- -- --

Defined Mode 7* AR -- -- --

Optimised Mode 2* AR -- -- --

Assessment 7

Technical Report 3 AR -- -- --

Impact Analysis 2 AR CI I I

Finding Prioritisation 2 AR -- -- --

Reporting 5

Report 3 R A -- --

Report Dissemination 2 R AR I I

Post-audit support N/A R AR C C

 * Estimation considering all possible controls and checks.

DIGIT Fossa WP2 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 11: Design of the method for performing the code reviews for the European institutions

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights Page 38 of 57

Legend:

 (R) Responsible: actor is assigned to carry out the task.

 (A) Accountable: actors in charge that have the authority to take decisions about the tasks.

 (C) Consulted: actors that can provide additional data or information regarding the tasks.

 (I) Informed: actors that need to be informed of the progress/results of the phase.

3.4. Test Categories

The following groups of tests and areas to test are considered for its use on the Execution Phase. These

groups include architectural and code review controls and checks, merged as they, in many cases, overlap

each other. This merge allows for a more detailed and appropriate analysis. These categories are the

following:

Data/Input management

The data entry points of an application, service or library are one of the weak points that must always be

controlled against unexpected values to protect the integrity and security of the application, this includes:

 Entry point identification: all data entry points must be identified, regardless of the origin of the data

(e.g. libraries, functions, user interaction…), and must be properly documented.

 Entry point validation: review that all data entry points have specific validation controls that filter

invalid data, code fragments or function instructions (e.g. SQL injection).

 XML schema validation: if XML data entry points are identified, their schema has to be validated to

ensure that it is robust, and there must be controls in place focused on their validation (structure,

schema and content).

 Data whitelisting/blacklisting: if available, any whitelist or blacklist configurations in place must be

checked to ensure that they are implemented properly and that they are used as expected (filtering

untrusted sources, invalid data format…).

Authentication controls

It covers any aspect related to the process where the solution reviews and verifies the identity of another

entity, such as a user, via the use of various authentication mechanisms (user credentials, biometrics, etc.).

 Authentication process verification: evaluation of the authentication methods used to grant access

to authorized entities.

 Password policy usage: ensure that there is a password policy is in use to control the user

credential strength, and determine the adequacy of this control verifying that it provides adequate

protection.

DIGIT Fossa WP2 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 11: Design of the method for performing the code reviews for the European institutions

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights Page 39 of 57

 Credential storage security: evaluate how the user credentials are stored in the solution, if

encryption or hashing is used to protect the password from unauthorised access.

 User account protection: verify that the user accounts are protected against unauthorised use,

including lockout times, password expiration and connection location validation.

 Password recovery process: identify if a manual password recovery process is available and

review the information required to validate the soliciting users’ identity.

 Two-factor authentication: identify any two-factor systems provided by the applications for their

users, identifying their robustness, optional features and use of different vectors (passwords,

biometrics…).

Session management

Covers all aspects of the protection and management of user sessions once they are authenticated against

the solution.

 Session creation: verify that the session creation process assigns the appropriate access and

control privileges related to the user for which the session is being created.

 Session ID management: the ID assigned to the session must be unique and never be reused for

the same or a different user. Similarly, the ID should not contain any personally identifiable data.

 Session lifecycle: the solution should be able to manage adequately the session throughout its

lifecycle, starting when it is created, defining timeouts, inactivity checks and other restrictions

imposed to protect it.

 Session logout: once the user exits the session, or the timeout is reached, the application must be

able to properly finalize the session, closing any open connections and removing any temporarily

assigned permissions.

Authorisation management

This process is designed to ensure that when a user or entity correctly authenticates against the

application, it gets the proper privileges assigned to it. These privileges should be assigned based on the

role and any specific permission that the user has, and should update accordingly if there is a modification

on them.

 Components’ implicit trust: verify that any communications between different modules or

components of the application make use of authentication methods and verify that the other

components’ credentials are valid.

 Access control systems: evaluate any access control system in use on the application, reviewing

the control rules applied, the process followed and the exception control it makes use of (special

cases, multiple errors, etc.) and the usage of predefined roles or privilege schemas. There are

three main access control systems to review (if in use):

DIGIT Fossa WP2 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 11: Design of the method for performing the code reviews for the European institutions

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights Page 40 of 57

o Role Based Access Control (RBAC).

o Mandatory Access Control (MAC).

o Discretionary Access Control (DAC).

 Privilege revision: if the solution has more than one role defined, then each role will have different

permissions. Therefore, apart from the use of a Privilege Schema (previous check), the application

should include specific controls designed to ensure that the privileges are assigned and enforced

correctly.

 Trust levels: if the solution accepts connections from external entities, there is a need to establish

different trust levels for the available entry points assigning only the must-have privileges, applying

the Principle of Least Privilege (POLP).

Cryptography

Covers all aspects related to the protection via encryption of the information and data in transit and at rest.

 Credential protection at rest: verify that any credentials that are stored by the application have the

appropriate measures for their confidentiality. The optional solution is to store a non-reversible

hash of the password, encrypted for security. The minimum level of security is provided by simply

encrypting the credentials and storing them locally.

 Credential protection in transit: review the security methods applied to protect credential

information in transit. Whenever possible, hashes should be sent instead of the credentials, and

these must be encrypted and protected to avoid interception and replay attacks.

 Cryptographic libraries in use: determine the cryptographic libraries used, if any, and obtain their

version to identify any possible known vulnerabilities or risks.

 Cryptographic configuration: evaluate any cryptographic parameters used by the application and

used to configure the libraries, algorithms or cyphers in use.

Error handling /Information leakage

The security of the internal information of the application is fundamental for its protection. The information

provided by the applications’ errors must be filtered to avoid providing any sensitive or internal information;

on the same page, metadata, sample pages and tutorials must avoid mentioning any sensitive information.

 Information leakage: the code must be reviewed, especially web content sent to the client and

scripts, in order to ensure that no sensitive information is leaked. On the other hand, debugging

information, functions and reports must also be disabled on production environments.

 Sample files: ensure that there are no sample or backup files available on the application, or if any

are provided, ensure that they contain no sensitive or internal information on them.

 Error handling: verify that errors generated by the application are fully controlled and do not

contain any sensitive or internal information.

DIGIT Fossa WP2 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 11: Design of the method for performing the code reviews for the European institutions

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights Page 41 of 57

Logging /Auditing

The logs generated by an application are a superb source of information about its contents, workings and

potential weaknesses. Therefore, these must be protected in order to avoid any unauthorised access or

leakage of this information.

 Log configuration management: review the log configuration parameters to ensure that the proper

information is gathered and stored.

 Log generation: review the log generation process used by the application, including the specific

phases the log goes through.

 Log storage: verify that logs are stored securely and that they can only be accessed by the

appropriate authorised users.

 Log integration: review the integration options provided by the log manager in relation with the log

provision to other systems (syslog, backup systems…).

 Log sensitive information: verify that no sensitive information is included on the logs; if such

information has to be provided, it will be masked or hashed to avoid identification.

Secure code design

There are several aspects related to the application itself and the technologies and frameworks used for its

implementation.

 Framework implementation: if any frameworks are used on the application, they should be

identified, listed and their implementation verified to ensure that it does not put the application, the

data it contains or its users at risk.

 Configuration parameters: identify how the configuration of the application is being managed,

including its storage, management, validation and application.

 JavaScript usage: the use of JavaScript on the client side must be controlled and only used in

cases where it is strictly necessary. The methods used must be reviewed to make sure that no

insecure or risky functions are used. Any validation done in the client-side via JavaScript must also

be done again on the server side.

 Variable types / operations: the operations carried out within the code regarding the different

variable types must be controlled to avoid unexpected results, effects or impact on the application.

 Expressions / Methods: functions and expressions must be controlled to avoid parsing null values,

properly manage functions and ensure correct expression management and transformation.

Optimised mode controls

Taking as input the results from the managed and defined mode, this part will cover very specific cases that

require further testing, as the automated/manual controls do not properly cover them.

DIGIT Fossa WP2 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 11: Design of the method for performing the code reviews for the European institutions

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights Page 42 of 57

 Concurrency: review the thread generation and management process, identifying all specific

controls in use and determining their proper working.

 Denial of Service (DoS): review weak points defined on the previous phases that could be

vulnerable to denial of service attacks.

 Memory and resource management: evaluate how memory allocation is managed by the code,

ensuring that is properly reserved when needed and liberated when it is no longer required.

 Code structure: evaluate all those processes in which the calls are made back into the code itself,

making sure that these calls do not overwrite previous ones in progress. At the same time, it is

fundamental to ensure that the application layers are properly and securely separated.

 Role-privilege matrix: review the privilege and role schemas in order to identify conflicts or

permission issues.

DIGIT Fossa WP2 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 11: Design of the method for performing the code reviews for the European institutions

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights Page 43 of 57

4 REFERENCES

[1] OWASP, “OWASP,” Free and open software security community, [Online]. Available:

https://www.owasp.org.

[2] ITIL, “Itil Books,” [Online]. Available: http://www.itil.org.uk/.

[3] IBM, “IBM Rational,” [Online]. Available: http://www.ibm.com/software/rational.

[4] European Commission, “joinup,” [Online]. Available: https://joinup.ec.europa.eu/.

DIGIT Fossa WP2 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 11: Design of the method for performing the code reviews for the European institutions

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights Page 44 of 57

5 ANNEXES

The following annexes contain the checklists to be used during the execution of the methodology, including

variants for each possible language to be analysed (such as JAVA or PHP), and the structure for the final

reports.

5.1. Annex 1: Control Checklist

This annex contains a checklist of all the controls that can be reviewed on a given code review project.

These controls have to be complemented with the corresponding checklist of the specific language of the

code to be reviewed (ex. JAVA specific requirements checklist, also in this Annex). Detailed information

about each one of the controls is included on Annex 2.

The checklist table is composed of four columns:

 Unique identifier (ID) of the control.

 Name of the control.

 Control applicability.

 Overall risk of the issues found for the control.

For each category, several subcategories have been defined, therefore, the following ID format has been

applied:

#CAT# - #SUB# - #000#

#CAT# is a three-letter abbreviation of the category name.

#SUB# is a three-letter abbreviation of the subcategory name.

#000# is the number of the control.

5.1.1. Data/Input Management (DIM)

The controls in this category have been grouped into the following subcategories:

 File Input / Output Management (FIM)

 Data streams management (DSM)

 Character encoding management (CEM)

 Input validation and sanitization (IVS)

 Sensitive Data Management (DSM)

DIGIT Fossa WP2 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 11: Design of the method for performing the code reviews for the European institutions

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights Page 45 of 57

5.1.2. Authentication Controls (AUT)

The controls in this category have been grouped into the following subcategories:

 Authentication verification (id: AUV).

 Password policy usage (id: PPU).

 Credential storage security (id: CST).

 User account protection (id: UAP).

 Password recovery process (id: PRP).

 Two-factor authentication (id: TFA).

5.1.3. Session Management (SMG)

The controls in this category have been grouped into the following subcategories:

 Session creation (id: SCP).

 Session ID management (id: SID).

 Session lifecycle (id: SLC).

 Session logout (id: LGP).

5.1.4. Authorisation Management (ATS)

The controls in this category have been grouped into the following subcategories:

 Component implicit trust (id: CIT).

 Access control system (id: ACS).

 Privilege revision (id: PRV).

 Trust levels (id: TLV).

5.1.5. Cryptography (CPT)

The controls in this category have been grouped into the following subcategories:

 Credential protection at rest (id: CPR).

 Credential protection in transit (id: CPC).

 Cryptographic libraries in use (id: CLU).

 Cryptographic configuration (id: CRC).

5.1.6. Error Handling /Information Leakage (EHI)

The controls in this category have been grouped into the following subcategories:

 Information leakage (id: INL).

 Sample files (id: SFL).

DIGIT Fossa WP2 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 11: Design of the method for performing the code reviews for the European institutions

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights Page 46 of 57

 Error handling (id: EHD).

5.1.7. Software Communications

The controls in this category have been grouped into the following subcategories:

 HTTP Secure Management (HSM)

 Secure Socket transmissions (SST)

 Web Services (WBS)

5.1.8. Logging/Auditing (LOG)

The controls in this category have been grouped into the following subcategories:

 Log configuration management (id: CFG).

 Log generation (id: GEN).

 Log storage (id: STG).

 Log integration (id: INT).

 Log sensitive information (id: LSI).

5.1.9. Secure Code Design (SCD)

The controls in this category have been grouped into the following subcategories:

 Framework requirements (id: FWK).

 Configuration parameters (id: CFG).

 JavaScript usage (id: JSC).

 Variable types / operations (id: VTY).

 Expressions/Methods (EXM).

5.1.10. Optimised Mode Controls (OPT)

The controls in this category have been grouped into the following subcategories or main tasks. The

approach of these tasks is different so there are less controls defined in favour of a more customized

analysis depending on the scope, objectives and code to be reviewed:

 Concurrency (id: CCR).

 Denial of Service (id: DOS).

 Memory and resource management (id. MRM).

 Code Structure (id: COS).

 Role-privilege matrix (id: RPM).

DIGIT Fossa WP2 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 11: Design of the method for performing the code reviews for the European institutions

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights Page 47 of 57

5.1.11. Specific JAVA Control Checklist (J*)

A checklist that contains all the controls that can be reviewed on JAVA based code reviews. These results

are complementary of the common checklist that has been defined on this document. The categories and

subcategories that include new controls are:

 Data/Input Management (DIM): Entry point identification (id: EPI)

 Authentication controls (AUT): Authentication verification (id: AUV)

 Error handling/Information leakage (EHI): Error handling (id: EHD)

 Secure code design (SCD): Variable types / operations (id: VTY)

Expressions / Methods (EXM)

Java Platform security (id: JPS)

Runtime environment (id: ENV)

Serialization (id: SER)

 Optimised mode controls (OPT): Concurrency (id: CCR)

Visibility and atomicity (id: VNA)

5.1.12. Specific PHP Control Checklist (P*)

A checklist that contains all the controls that can be reviewed on PHP based code reviews. These results

are complementary of the common checklist that has been defined on this document.

 Data/Input Management (DIM): Entry point validation (id. EPV)

File handling (id. FHD)

 Session management (SMG): Session creation (id. SCP)

Session lifecycle (id. SLC)

 Authorization management (ATZ): Privilege revision (id .PRV)

 Error handling/Information leakage (EHI): Information leakage (id. INL)

Error handling (id. EHD)

 Secure code design (SCD): Variable types/operations (id. VTY)

Declarations and initialisation (id. DIN)

DIGIT Fossa WP2 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 11: Design of the method for performing the code reviews for the European institutions

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights Page 48 of 57

5.2. Annex 2: Final Report Structure

The results of the code review audit will be presented on a report that will be distributed to all parties

specified on the scope of the project. There are two reports, a full (detailed technical) report and an

executive report.

5.2.1. Detailed Report

The full code review report will include detailed sections of all the findings identified, and

recommendations to mitigate or solve them:

Final code review structure for the full technical detail report:

1. Introduction

1.1. Context

1.2. Objective

1.3. Scope

1.4. Definitions and acronyms

2. Executive summary (high-level summary)

2.1. Analysis

2.2. Findings (checklist)

3. Methodology

3.1. Planning

3.2. Execution

3.3. Assessment

3.4. Reporting

4. Audit details

4.1. Initial considerations

4.2. Planning

4.3. Detailed tests

5. Recommendations

5.1. Detailed recommendation

5.2. Prioritisation

6. Conclusions

7. Annexes

Overall, the structure must allow the reader to understand the motive, objectives, method followed

and the results obtained, giving a full overview of the code review status.

DIGIT Fossa WP2 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 11: Design of the method for performing the code reviews for the European institutions

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights Page 49 of 57

5.2.2. Executive Report

The executive report will be a reduced version of the full report, omitting the detailed technical

reports, and containing a reduced methodology description.

This report will be tailored considering one main premise: a high-level overview allowing the

stakeholders to easily see the current security status of the code reviewed, the main vulnerabilities

and weaknesses, as well as the recommended steps to increase the security of the solution.

5.2.3. Communication Results Formatting

The communication of the results of the code review will make use of the tools that have been

selected for this methodology. These results will be formatted based on the CVRF v1.1 structure

defined by MITRE.

This structure must contain at least the following main elements:

Table 23: Basic CVRF elements

Common elements Product tree (details)

> Document title
> Document type
> Document published
> Document tracking
> Document notes
> Document distribution
> Aggregate Severity
> Document references
> Acknowledgements

> Full product name
> Relationship
> Product groups

Vulnerability

> Title, ID, Notes
> Discovery & Release date
> CVE / CWE / CVSS scores
> Product status
> Threats
> Remediation’s
> References

DIGIT Fossa WP2 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 11: Design of the method for performing the code reviews for the European institutions

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights Page 50 of 57

5.3. Annex 3: Code Review Procedure

5.3.1. Planning Phase

Project Inputs: The inputs will be provided before the start of the project, using a wiki system, file hosting

system, or similar options.

The project inputs are listed as follows:

 Client expectations (Scope, Time, Budget). The client the organisation which is going to provide

the budget for the code review.

 Documentation: architecture diagram, use cases, functional designs, data flow diagrams, and any

other documentation that can provide better understanding of the code structure and/or

functionality to the code review team

 Code: Uncompiled source code. Optionally, assembled code parts could be provided to allow the

analysis by some tools (e.g. FindBugs).

 Contact information: email, phone, availability and backup of all the interested/relevant

stakeholders (sponsor/client and/or software owner.

 Previous security tests: code review, penetration testing or similar analysis.

 The following folder structure will be used to store all the information:

o /1. Management/

 /1.1 Contact Information/ (Client information, code owner information)

 /1.2 Planning/ (Scope, Time, Efforts)

o /2. Input/

 /2.1 Documentation/

 /2.2 Code/

 /2.3 Previous security test reports/

o /3. Execution/

 /3.1 Working files’/

 /ModuleX/ (It contains a register of the code files that composed the module, as

well as if they are part of a batch. The code files or batches will have an ID: ModX-

FileY or ModX-BatchZ and will be used as name of the working folders)

o ‘ModX-FileY’

o ‘ModX-FileV-Divided’ (when a code file is quite long and it has more than 500

code lines, the file is divided into smaller files of 500 code lines or less, as

explained in the ‘Execution Phase’ subsection)

o ‘ModX-BatchZ ' (a set of code files that have to be analysed together, as

explained in the ‘Execution Phase’ subsection.)

DIGIT Fossa WP2 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 11: Design of the method for performing the code reviews for the European institutions

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights Page 51 of 57

 /InterModuleX/ (For those batches that are composed of different code files from

different modules, it will be considered as a ‘virtual’ module. This mode is

composed by the batch that contains all the code files that are part of the inter

module batch).

 /3.2 Working Report/

o /4. Output/

 /4.2 Evidences and checks/

 /4.1 Final Report/

Planning: Review the project, and estimate the efforts required based on the input received. This

estimation will depend on several key factors, as follows:

 The selected code review method (‘Managed mode’, ‘Defined mode’, or ‘Optimised mode’).

 The documentation of the code (quality).

 The number of controls and categories to use.

 The complexity of the code review (low, medium, high), as explained below.

 The difficulty of the controls to analyse, as some controls are quicker to review than others.

 Time or deadline restrictions imposed by the client.

The complexity of the code review is estimated according to the number of categories of the controls that

are applicable to the module (software) under test. The classification criteria is:

 If there are 1 to 4 applicable categories, then the complexity of the module analysis is “low”.

 If there are 5 to 7 applicable categories, the complexity of the module analysis is medium.

 If there are more than 7 applicable categories, the complexity of the module analysis is high.

In the event that a big application has to be analysed, an efficient option is limiting the scope by reducing

the number of modules to analyse, especially regarding the manual review (‘Defined mode’ and ‘Optimised

mode’). If reducing the scope is required then, in our experience, from 5% to 15% of the code represents a

trustworthy sample to manually review the more critical aspects of the application.

However, these estimations assume that the quality of the documentation is high. In the event that the

document quality is different, the estimation will vary greatly:

 For medium-quality documentation, the time/effort requirements will increase around ~50%.

 For low-quality, or non-existent documentation, the time/effort estimations will have to be

increased at least by 100%.

Taking into account the previous information, several management aspects are defined:

 The code review planning

 Software modules are going to be examined, which categories are included, what level of depth

has been requested, etc.).

 Time

DIGIT Fossa WP2 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 11: Design of the method for performing the code reviews for the European institutions

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights Page 52 of 57

 Final budget of the project.

After the definition of the management aspects of the code review, the client (the organisation which is

going to provide the budget for the code review) must approve those aspects. Thus, to sum up this phase

there are several steps:

 First, collect the project input provided by the client.

 Analyse the project input obtained.

 Define the management aspects of the code review project.

 Get the approval of the client regarding the management aspects of the code review (final budget

required, time and effort required).

5.3.2. Execution Phase

The project will start after the client approval has been obtained; nevertheless, several actions should be

carried out beforehand:

 Organise the code review team staff and define their roles during the project.

 Prepare the roadmap based on the project planning and scope.

 Decide how the code files are going to be analysed using the code review controls. (Code Review

Process)

Team Organisation: Organising the team is an important matter that will directly affect the efficiency of the

review process. To follow an efficient approach, our proposal is dividing the team into two sub-teams. The

idea is to have two different queues of code files to analyse (‘A’ and ‘B’), where one of them will face those

controls that are more difficult to analyse.

In order to do that, queue ‘A’ team will have a time limit per code file. If the analysis of the code file is not

over before the time limit or its analysis is quite difficult, the current code file will be sent to queue ‘B’ team.

Queue ‘A’ will go on analysing code files while queue ‘B’ will analyse the slow and/or difficult controls.

Most controls will be analysed faster, as they are not applicable in all code files, or are easy to detect,

whereas the difficult ones are usually a minority. While not applicable ones are discarded and easy ones

are analysed in queue ‘A’, queue ‘B’ is analysing the difficult ones.

Nevertheless, queue ‘B’ will be working similar to queue ‘A’ until a controls exceeds a time limit and is sent

to queue ‘B’ for analysis. The time limit has to be determined, depending on the code review context, but a

good approach will be 30 minutes per code file. The advantage of this method is that difficult controls are

analysed in parallel, therefore increasing the efficiency of the code review process.

DIGIT Fossa WP2 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 11: Design of the method for performing the code reviews for the European institutions

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights Page 53 of 57

Figure 11: Working Queues

Once the team organisation is understood, the team has to be divided into those groups. Taking into

consideration the nature of the queues, team ‘A’ can be composed by less experienced code reviewers

while queue ‘B’ will be composed by experts and veteran team members.

This approach is not a static one, this model can be extended by adding more queues with different time

limits, for instance:

 Queue ‘A’, time limit: 30 min per code file. If a code file exceeds the time limit, it will be sent to

queue ‘B’.

 Queue ‘B’, time limit: 1 hour per code file. If a code file exceeds the time limit, it will be sent to

queue ‘C’.

 Queue ‘C’, for those code files that are difficult to analyse, or they require more time than the time

limits.

Nevertheless, it is important to notice that some security functions involve several code files instead of only

one. In this case, all related code files will be composed a group (batch) of code files, and analysed

together (in the same working queue, or same person depending on its particular case).

If a code file is too long (more than 500 code lines), the file will be divided into a set of files with a maximum

length of 500 code lines approximately. These ‘virtual’ files will composed a batch of code files saved in

same folder than the original one, and they will be analysed as a batch.

Code Review Roadmap: The roadmap is an exercise where the different tasks and actions are ordered

during the code review, as follows:

 Launch the code review tool for the modules that will be analysed using the ‘Managed Mode’ of the

methodology, and analyse the results. Anyway, the software modules under analysis using the

‘Defined Mode’ and ‘Optimised Mode’ will be analysed using the tool too, because the code review

modes are incremental ones, the upper levels extend the lower levels.

 Those software modules, which are going to be analysed using the ‘Defined Mode’, have to be

divided into the working queues, taking into account that queue ‘B’ has to deal with those code

files that require larger time frames.

 In the event of analysing software modules using ‘Optimised Mode’, this will be carried out after

analysing the modules under test using the ‘Defined Mode’. That is why the ‘Optimised Mode’ is

the ‘Defined Mode’ + specific controls. It would probably require more time to analyse the code

DIGIT Fossa WP2 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 11: Design of the method for performing the code reviews for the European institutions

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights Page 54 of 57

files under this mode, because of the larger number of controls. By this way, the rest of the code

under analysis will be reviewed faster.

Taking into account the previous information, our proposal for the roadmap structure would be as follows:

 Launch the tool to test all modules under scope.

 Review the results using the team structure defined previously (working queues).

 Analyse the modules under test using ‘Defined Mode’ (those that have to be analysed using the

‘Defined Mode’ as well as the ones of the ‘Optimised Mode’), using the working queues. While no

issues arise, the modules will be distributed indistinctly. If an issue arises, all software modules will

be sent to queue ‘B’ until all the issues are solved.

 Once the ‘Defined Mode’ is done for the modules under test, the specific code review controls of

the ‘Optimised Mode’ will be addressed (using the working queues).

Code Review Process: In order to be efficient during the code review execution, the code files have to be

analysed in a structured way. Our proposal is an iterative approach where those parts of the code that are

not clear to analyse will be left for the next iteration. By this way, the easy findings (about 80% of the code)

will be done fast, leaving the blocking ones (about 20%) for the next iteration.

1. The first step to analyse the code file is to examine the file, highlighting what parts of the code are

susceptible to be reviewed from a security point of view. Those parts that are not easy to

determine if they have to be analysed, will be marked as “pending” and will be reviewed in the next

iteration.

2. Once those parts are detected, the applicable categories are selected for each part. Those parts

that are not easy to determine what categories have to be applied, will be marked as ‘to be

reviewed’ and will be examined in the next iteration.

3. Analyse each part using the selected categories. Those parts that are not easy to analyse will be

marked as “pending” and will be reviewed in the next iteration.

If all parts of the code have been analysed, a final iteration is required to verify that all parts have been

analysed.

Figure 12: Code Review Process

To do that, a good idea is to use a support document to aid during the code review process. This document

has to contain what part of the code is analysed (code lines and file name, e.g. ‘34:65), and what

categories and sub categories are utilised.

DIGIT Fossa WP2 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 11: Design of the method for performing the code reviews for the European institutions

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights Page 55 of 57

Figure 13: Structure of the Tables of the Support Document

Code

File

Code to

Analyse
Categories

Current

Status

Check in

the next

Iteration

Notes

FileX.z 34:65
xxxxxx

yyyyyy

0/1/2/3/

Done
Yes/No

 Abksdfkalsdfasdf

In the event of having a batch of code files, the previous table will have several entries for each code file. If

many parts of the same code file have to be considered, several entries will be added for each part of the

code to examine.

This support document will be quite important if a code file is sent from one queue to another, because this

will reflect the last status of the analysis, avoiding wasting time doing the same things twice. It is desirable

to have a modification history in those documents.

Thus, two documents have to be used during the code review process: the support document to track the

analysis, and the excel file with the results of the analysis. Our proposal is generate a folder, in the project

working directory, for each code file or batch of code files. In that folder, the two documents previously

mentioned will be stored. The names of those files will be as follows (depending on whether is a code file or

a batch under test.):

 ‘Results_FileX.xml’ or ‘Results_BatchX.xml’.

 ‘SupDoc_FileX.doc’ or ‘SupDoc_BatchX.doc’

Previously, in the ‘Code Review Roadmap’ part we explained that the methodology modes will be

analysed incrementally. The previous files will be reused for the different modes, but the support document

will have a table for each analysed mode, and the modification history correctly updated.

Support document example:

support_document.do

cx

Once all the software is analysed, all results (excel files) have to be aggregated in a single excel file. This

will be created in the folder ‘Working Report’, where all the results will be added and be ready for the

assessment phase. This task will be done by a single code reviewer, to ensure the integrity of the results,

and this person will have a checklist with all the code files and/or batches analysed in the code review. This

person is in charge of adding the results will use that check list to ensure that all results are added.

DIGIT Fossa WP2 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 11: Design of the method for performing the code reviews for the European institutions

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights Page 56 of 57

5.3.3. Assessment Phase

Once the Execution Phase is finished and the results are put together in the Excel, we assess and evaluate

the findings.

To carry out this task, the excel file provides a set of cells with a dropdown list with the values and their

meanings contained in Table 15 to automatically calculate the final values for Threat, Vulnerability and

Impact of each check. These values will be used to automatically calculate the value of these

characteristics for the Controls that contains the checks evaluated and, so, the Global value of the issue.

This can be done by only one person or the effort can be divided among different members of the team, but

our recommendation is to assign the task to only one person, to maintain the coherence and criteria of the

assessment.

The process must be conducted as follows:

 For each check that does not comply with the condition, there will be a set of cells with dropdown

lists containing the possible values corresponding to the characteristics of the Threat, Vulnerability

and Impact related to the occurrence of the issue (See Table 15 in this document).

 This will automatically calculate the values for Threat, Vulnerability and Impact on sheet “Controls”

and so the Global Risk Value for the control that contains the checks evaluated.

If it´s necessary to divide the effort among different code reviewers, we propose the use of temporary files

as the way as the working files in the Code Review Process of the Execution Phase. The names of these

files will be as follows:

 ‘Assessment_CategoryX.xls’.

Then all the partial results must be put together

In the special situation of finding a critical vulnerability, the procedure defined with the stakeholder in the

preparation of the planning phase of the methodology (Section 3.1.1) will be followed.

Then a prioritisation plan must be developed in order to define what issues must be solve first according to

their severity. This prioritisation plan will help developers to know what the more critical issues that must be

solved are. (See Figure 8 in this document for a Sample of Priority Levels).

5.3.4. Reporting Phase

Once the assessment phase is completed, the assessment results, findings prioritisation action plan and

recommendations must be included in the Executive Summary Report and the Detailed Technical Report,

which are part of the Final Report.

For this purpose, a template has been developed to generate instances of the Final Report, to include all

the information about the code review, stakeholder, scope, etc., and its results:

Code Review Report

This template will be modified once all the controls have been finalised

DIGIT Fossa WP2 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 11: Design of the method for performing the code reviews for the European institutions

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights Page 57 of 57

The ‘Overview’ sheet of the excel file generated in the assessment phase will help with the Executive

report, finding indicators placed in the Executive summary (See Figure 7 in this document).

To carry out this task, the excel file generated in the assessment phase can be included as an object or

with the Final Report.

In addition, a detailed list of recommendations must be included in the Detailed Technical Report.

All the documentation generated must be disseminated to the distribution list defined in the planning phase,

using the communication methods defined in that phase.

