DIGIT Document Repository
Codename: REPO

DIGIT Document Repository: Codename: REPO

Table of Contents

Lo ATCRITECIUIE ...t e e ettt e et e e e et et e e et et e e et et e e e e aba s 1
O [L oo (0 1o o RSP PP PPPPPT 2
2. Architectural goals and philOSOPNYccoeuiiiiii e 3
3. ASSUMPLIONS 8N AEPENUENCIES ... ceeiii ettt e et e e 4
4. Architecturally SignifiCant reQUIFEMENTSciiiie ettt e et e et e e e et e e eereaeeees 6
5. Decisions, constraints, and JUSLITICAHONSuiiueiiiiii e e 8

5.1. RE@ONal daLADESEceeiiiieeeiii e 8
5.2. Persist index data in relational databaseoovviiiiiiiiii i 8
6. KEY @DSIFACHIONSeecieiii ettt ettt 10
6.1. DEPlOYMENE TIBOIAIM ...eeuiiiiie et e e e e e e aa e 10
7. Layers or architectural frameWOorKcooeuiiiiiii e e 12
T L DABIDESE ...ttt e e e e e e aae 13
7.2, PEISISIENCE LAYEN ...ttt 14
T3 DEIEGALES ...ttt 15
T4, SEIVICE LYY .. 15
7.5, CMIS LAYEN ..ottt et e 15
7.6. Package distribDULIONcoooinii e 15
T.7. SEIVEL SEAIISIICS .. eeeeiieee ettt ettt et et e e e e e aene 17
AR S A o o1 o TP PP PPPPPT 17
8. ATCHITECTUIEl VIBIWS ...ooeiiieit ettt ettt e e et e et e e et e e eenens 18

A D L - W 010 o = TSP P TP UPPPTR 19

3. INOEXING PrOCESS ... ettt ettt e et e et e e et e e e et et e e et e e et e e e e e enb e e e enaa s 20
R O] 11 ST SPTPPPPR 21
22 111 oo (U ot (oo H PP PPPRTR 22

VLY o= G 1= | TSP 22
2.2. ReqUIremMents / RESINCHIONSiiiiieiiii ettt 22
R R [0105 o = (oo H PP UPPPTI 22
3 REVEISE TNUEX ettt ettt aaas 23
3L DEFINITIONS ..ottt ettt et e 23
3.2. REPO INAEX SIIUCTUIE ...ttt e et e e et e e et et e e e e et aeeeena e eeens 23
3.3. Reciprocity between Repo index and LUCENEco.uiiiiiiiiiiiiiii e 23
4. INAEX COMPONENEStteeeeti ettt ettt ettt e et e ettt e e e e b e e et e b e e et et e e et et e e et st e e e e ebaes 25
A1, INEX ENEFY POIMES ...eetieeeeit ettt et e et e et et e e et et e e e ee b e e e eeta e e e eebe e e eeeteaeeees 25
4.2, INAEXSYNCAIONIZES ...ttt et ettt et e e e e e e eaan s 25
A.3. INOEX TBSK ...ttt ettt e e e e et e eeab e aee 26
A4, INEX Pt OPEIBIONeeetiietiiti ettt ettt et et e et et e et et e e e e et e e e e eba s 27
A5, TEXE BNAIYZENS ...ttt ettt et et et e e et e aen 28
4.6. CONENT EXITBCTONuuiiiri ittt ettt ettt e e e et e e e e e e e e e enneees 28
A7, TrANSIENE INOEX ettt ettt e et e e et e e e et eeeana s 29
4.8. PEIMENENE INOEX ... eeeeiie ettt e et e et e e et ettt e et e e e 29
B, INOEX PrOCESSES ...ttt ettt ettt ettt ettt ettt ettt e ettt e et et e e et et bt e et e e ettt et e a e e enaa s 30
5.1. HOW WOrdS are eXIraCled?coouuiiiiiiii ettt e et e e e e eees 30
5.2. How the index is POPUIALEA?coourieiiii et 31

A, QUENY SEIVICE ...eteiti ettt ettt ettt ettt ettt ettt ettt h e et e b oo et e b e e et b et et e e e e et 36
O | gL oo (8 1o o RSO PP P PP UPPPTPRSPPPIN 37
2. Query iNterfaCes/ENEIYPOINLSu ittt ettt e e et e et e e e e e e eba s 40
3. QUENY PIrOCESSING SEEPIS ... eeeettneeeetteeeett et ettt e et ee bt e et ett e r et e et e et e etb e r et e et r et e ebar et e ebeneeennnaeeenees 41

3.1. Step 1: Parse query and generate Abstract Syntax Tree (AST) ...coeveeiieieeiineeieieeee e 41
3.2. Step 2: Process (walk) AST and generate relational query (JPA)eveeiieeiiiiineeieeeeeie 41

B POLICY SEIVICE .. ittt ettt 42

O | gL oo (8 1o o RSO PP P PP UPPPTPRSPPPIN 43

DIGIT Document Repository

A o) Loy T (= oY o = PN 44

N T o) oy g1 (= S 45

A 1 1] o) 46

3. HOow to implement @ NEW POIICYcveeeiii e e e e e e et e e e e e e aans 48

L N7 = o L oo =P 49

6. CONfIgUIAtioN ParaMELESuuiiiieiii e eei et e e e e e e e e e e e e e e e e e e et e e et e e e e e etn e e et e e et e e et e eaneeennns 50
O =0 (V7 o a0 B S 51

P2 001010070 0 10 1 1= PSP 56

A 1= o o) 011 100 -0 T 57
I (o] 0 = | = 1o o PSP 58

1.1. Compile APR and Tomcat Native INtErfacecouuviiiiiieii e 58

1.2. Configuring JVIM ParaMELEN'Sciuuuieeieeei e eie et e et e e e e e et e e e et e e et e e et e et eeanneeennnas 58

P2 10 = = 1 o) o PP 60

2.1. Creating the dafabasec..iiiiiiii e 60

2.2. Repository configuration fillEScouuiiiiiiii e 60

2.3. DEPIOY War Il et 60

G oot~ o S] = e o OSSP 61

3.1. Configure the rePOSITOrY INSIANCEcuvuiii e e e e e e e e e e e e e aaes 61

S = V= N A= oo (= 61

4. Upgrade from version 1.0.0 10 L1.1.0 ...uuiiiiiiiii e e e e e e e e eaa 62

4.1. Update .profile - IVIM ParamELErScevu i e e e e e e e e e e e e e e e e e e st e e e e eaaaees 62

4.2, EXECULE The DB SCIIPLS .evuiiiiiiiii e e e e e et e e e e et e e e e e e et e e e e et e e et e e et e e aaeeaenes 62

4.3. Rebuild normalized MELadataccuuuiiiiii i 62

5. Upgrade from version 1.1.0 10 1.2.0 ...cuuuiiiiniiiiiiiiii e e e e e e e e e e e e e et e e e e e e 64

5.1. EXECULE thE DB SCIIPLS .. evuiiiiiiieiiee e et e et et e e ean e eaneeeen 64

5.2. Migrate existing repositories type definitions to CMIS L1coovviiiiiiiiiiiiccie e 64

5.3. Migrate existing repositories datato CMIS 1.1cociuiiiiiiiiiii e e 65

ST = o 1 1 /P 67
IO 1 oo (0 1o o TSP 68

2. Security configuration DY FEPOSITONYcvvuuieii i e e e e e e e e e e e e e e et e e e eeaes 69

2.1. Default SECUILY PrOPEITIES ... cive i eiii et e e e e e e e e e e e et e e et e e e eeeen 69

2.2. How to configure the repoSitory's SECUMLYiiueieiii e e e e e e e e e 69

3. CMIS SEIVICES SECUMTY .uiivieiii et e e e ettt et e e e e e e e e e e e e et e e e et e e et e e eta e eaaeeat e eetnaeeannaees 73

30 I Lo = o T = o PR 73

3.2. AUtheNtiCated USEIS ONIY ...cvuniiii it e e e e e e e e e e e et e e et eeaaeeannaees 73

3.3. AULNOMIZE USEIS ONIY ..ouiiiiiii e e e e e e e e e e et e e e e et e e et e eeaaaees 73

S o U 1 YA 17 110 = PPN 77
o[11 T = =PSRRI 77

4.2, Security Handlers by rEPOSITONYcvvuiii i e e e e e e e 77

4.3, SIMPIE VS, MUIIPIE .. e e e e e e e e e e aens 77

4.4. How the prefixes work for 10gin and ACLSccuuniiiiiiciie e 78

4.5. Supported Authentication HandlIersoiiiiiiiiiii e 79

4.6. Supported Authorisation Handlersccouiiiiiiiii e e 79

ST o PP 83

o3 I [oo [0 1o o PP 83

L @ I (= 10T o] o PP 83

5.3. Default CMIS PrinCipal idSccvuiiiiieii e e e 84

B4, EXAMPIE OF USE ..oiiiiiiii i e e e e 84

LS I @00 o o8 =i o) o P 88
OV o) 11 o 89
T I T =70 < 90
R 4= 01T o) L PP 91
I e (s = To g T B - PP 92

N 1 00 Lo g [PSP 92

DIGIT Document Repository

13. Administration panel manual

List of Tables

3.1. Reciprocity Repo - Lucene

Vi

List of Examples

O BN o (07 o PP RPPT 9
7.1. Apache 7 coNf/CataliNaPIOPEITIEScceuui ettt ettt e et e e et ettt e e et e et e et e e e enne e aeees 60
ST TP UPPPTTRPPPPIN 72
ST PP UPPPTTUPPPPIN 73
S TP UPPPTTRPPPPIN 80
S TSP UPPPTTRPPPPIN 80
LS TP UPPPTTRPPPPIN 82
LS TP UPPPTTRPPPIN 83

Vii

Chapter 1. Architecture

Architecture

1. Introduction

This chapter describes the philosophy, decisions, constraints, justifications, significant elements, and any other
overarching aspects of the system that shape the design and implementation.

Architecture

2. Architectural goals and philosophy

The main goal of this project is to provide CMIS compliant services.

To reduce the time to provide the services to third parties, a roadmap was designed to incrementally add new

funtiondlities:

Roadmap

Release 1.0.0-BETA1

Release 1.0.0-BETA2

Release 1.0.0-BETA3

Release 1.0.0

Release 1.1.0

Complete CMIS Repository services
Complete CMIS Repository services
Complete CMIS Object services

Complete CMIS Navigation services

Basic security funtionalities

Complete CMIS Discovery services (properties and fulltext search)
Complete CMIS Versioning services
Complete CMIS Relationship services
Complete security funtionalities
Adminitration panel to manage repositories
Complete CMIS Renditions services
Complete CMIS Multifiling services
Complete CMIS change log

Implement CMIS 1.1 services

Architecture

3. Assumptions and dependencies

The target enviroment is Java 7. Currently using Tomcat 7 but the project is not using any non-standard funtionality
of the servlet container. This means could be replaced in the future with no overhead.

The target Database is Oracle for production and H2 for development and test. As the Entity classes have sequences
configured and we have some SQL statetents in the indexing part, we are partially couple to a DB with sequences. In
the future we could evaluate other databases like MySQL but thisis not in the roadmap for version 1.0.0.

Tools

Tools used during the development that ara not part of the final product.
* Maven (Build automation)

« Jenkins (Continuous inetgration tool)

 Jira(Issuetracker)

 Git (Source control)

» Ant (Autodeployment process)

 Sonar (Quality check)

* JMeter (Stress tests)

* JUnit (Unit tests)

» DBUnit (Unit tests of the persistence layer)

» Dochook (Documentation)

Frameworks and libraries

Components that are part of the product, these are direct dependencies of the package.
* Spring (IoC, MVC, Security, ORM, etc.)

» JPA2 (Hibernate), JDBC

» Apache Chemistry OpenCMIS (CMIS client and server framework)

» Apache Tiles (Used in the administration panel)

* SLF4J(Logging)

» H2 (Embedded database engine, used for the tests and indexing)

» Apache Commons Configuration

* ANTLR (Parsing the CMIS queries)

 Lucene (Indexing)

» Tika (Extracting textual content from documents)

Architecture

e JMX (MBeans exposed with internal statistics)
* jQuery

» Twitter bootstrap

Third parties systems and components

Systems and components that are not part of the deployable package.

» Oracle Database (Main persistence system)

Architecture

4. Architecturally significant requirements

Funtional requirements

The project should satisfy the following funtional requirements:

The system should be able to provide CMIS services
Selfcontained, be able to be used with no external dependencies
A server instance may host more than one repository
Implement the capabilities configurable by repository

Cover the code with unit testing.

Hardware requirements

See below the list of requirements related to the hardware infrastructure;

Brief description of the application purpose:

CMIS 1.1 repository server, thiswill serve as document repository based on the standards http://en.wikipedia.org/
wiki/Content_Management_|nteroperability Services.

Specific availability requirements (if any), e.g. if the IS isto be accessible worldwide, 24/7/365 availability is
needed and any technical intervention must be kept to a bare minimum:

Initially the system will be accessible from the EC network and should be accessible 24/7 (this service will be
used by other applications).

Local file system needs (if any) and approximative size and growth rate:

Minimum usage of file system, only cached and temporary files will be created. A provision of 10Gb could be
enough. The information will be stored in the database, in which could be at the Sherlock level (200Gb)

Memory requirements,

We haven't done memory requirement assessments, standard memory configuration could be applied until stress
test will be done.

64 bits application or not (for Tomcat parametrisation),

Java 7 64 bits and Tomcat 7 64bit. Classpath added to / dat a/ appl i cat i ons/ r epo/ conf
HTTPD server asafront-end (if needed),

Yes

Dependency on another information system (shared database or service, Trade internal or central (e.g.
PDFCode)),

None

Authentication mechanism (using various Authentication Handlers) or public access,

Architecture

* Incoming or outgoing mail,

No

General information

Application name Trade document repository
Acronym REPO
Short description CMIS 1.1 compliant document repository.

M aximum acceptable unavailability 24 hours

Priority high
DRP ready yes
Performance email no

Url to page with all links of

application

Sensitive data yes - Limited High

IT Classification Specific

Authentication customizable

DB type Oracle 11

Technologies used Java 7 64bits;, Tomcat 7,
Filesystem used 10GB

Database size 200GB

Memory requirements Default memory configuration
HTTPD server required

Architecture

5. Decisions, constraints, and justifications

There are several constraits
» Use standards
» Be vendor independent

» Use existing components, and adapt them base on our needs

5.1. Relational database

The decision to use relational databases was taken because several factors:

Transactions

With arelational database system, we don't need to implement atransaction layer. All important database providers
implements transactions, and this helps us to focus more on the business and less in the infrastructure.

Concurrency

within an alternative storage like afile system we could experiment issues with concurrent users (e.g. locking of
files). The database implements a concurrency control out-of-the-box.

Consistency

with referential integrity all the relations between the different parts are managed at the database level. The data
consistency isimproved and the complexity of maintenance reduced.

Known technology
Databases are a known and reliabl e technology
Simplicity

Using only one persistence system will reduce the complexity. For queries paginated and sorted would be very
complex and bad performance to query two systems and merge the results.

5.2. Persist index data in relational database

The decision to implement our own persistence implementation of indexing system was made based on the
following reasons:

Vendor independence

Despite we could use vendor specific solutions, was decided not to use them to have a solution more portable and
independent.

Thisisvery convenient for the tests. We could easily change from from a database product to other one.
Easy integrability with other components

Persisting the index information in the database is giving us the oportunity to integrate with the other components
easily.

Architecture

To implement the discovery servicesit's needed to combine filters using both, the object metadata and the index
data, keeping both information in the same system reduces the complexity and improves the performance.

Performance

A common issue of combining information from several sources is the pagination and sorting.

For example, If the end user asks the documents that contains the word China and the author 'Alice”:

Example 1.1. CMIS query
select * fromcm s: docunent where contains('China') and cmis:createdBy = 'Alice'

The system needs to search in two subsystems: the metadata subsystem for the author and the fulltext search
subsystem to filter by the word.

Asthe user isonly interesed on a page of the results, we could not filter the results in the subsystems. So this ends
up with aquery on the fulltext search subsystem with all the documents with the word 'China.

K eeping both subsystems together eliminates this issue and make the queries using less resources and more scalable.

Architecture

6. Key abstractions

6.1. Deployment diagram

Application Server

Apache Tomcat 7.0.x

Repo application 1.0.0

CMIS bindings

CMIS client

Oracle 11g Database

|
I
|
1
I

Services | Repo schema \j

|
I
: Authentication service

Index Security

Authorisation service

Filesystem

Transient index Configuration files

Transzient data for
generating the
permanent index

A deployment diagram in the Unified Modeling Language models the physical deployment of artifacts on nodes.

10

Architecture

The following diagram was intentionally ssmplied in terms of internal components, as the goal of the model isto
represent the interactions with external services.

The CMIS client is connected to the application and profiting the CMIS bindings, is executing the services.
The application is persisting most of the datain arelational database.

The security component is dealing with an authentication service and an authorisation service. For simplicity in the
diagram is only represented one security component, but could be divided into two different scopes. CMIS security
related and web application security related.

For accessing the administration panel of the repositories, the application is using an authentication and
authorisation service. Only to point out that both parts of the security are independent and could be configured with
different providers.

Theindex component is saving temporary information in the filesystem. An embeded database is storing the words
of the documents to later process and build the permanent index data.

The configuration files are under the filesystem, Tomcat is able to read these files because the path was added in the
classpath.

11

Architecture

7. Layers or architectural framework

The application could be divided in several layers: database, persistence, service and CMIS layer; but there are other
components as well that could interact at several point on the system: Security, Index and Query.

ChIS Client
CMIS Service
Service
5
- Query Idex
C
1]
r Selectors
i .
Entity
3 Manager Delegates
)
Entities 1DBC
Database

In the previous diagram, there are there main subsystems: the database, the application itself and the CMIS client.

The database it's an external layer that stores all the information of the repository. We kept this component vendor
independent using JPA2 and JDBC. Currently we are using Oracle Database and H2.

The application subsystem is comunicating with the Database with JPA2 Entities and JDBC. On top of the Entities
we have an instance of j avax. per si st ence. Ent i t yManager for the CRUD operations, and selectors for
the queries.

For retriving and storing the files into the database and the indexing process, JDBC is used instead JPA2. The
Delegates have the reponsability to group the JDBC code.

The service layer is the responsible of implementing all the interactions with the repository using Entities instances.
Up to this point there's no dependency on Apache Chemistry OpenCMIS.

Note

The repository service layer isindependent of Apache Chemistry OpenCMIS, but we are using the
enumerations from them. Was decided to use the enumeration for avoid duplication. In the improvable
case we will implement the server with another framework we could decide to keep the enumerations from
Apache Chemistry OpenCMI S of have alocal copy.

The CMIS service layer is transforming the data coming from the client into our model. Once the data is trandl ated,
amethod in the service layer is used.

From bottom to top:

12

Architecture

Database Stores all the information of the repostitory.

Entities JPA2 Entities mapped to database tables.

Entity Manager Managing the CRUD operations of the Entities

Selectors Implementing the entities queries.

Delegates Contains the code to interact with the Database that is not covered by selectors and Entity

Manager.

Query Implements the parsing and execution of CMIS queries.

Index Implements the indexing of thefiles.

Services Containsthe internal logic of the repository.

CMIS Services This layer transforms from Apache Chemistry OpenCMI S Interfaces to our Entities data

structure.

Security Thisisan horizontal component, manages the security.

CMISclient Any application of framework that implements CMIS standard.
S - - - - - 7 T 777" [T -~ [
I | CMIS Service & | I I | CHIS Service B | I
| | [|
I r | [9 |
| | [|
[¥ [[¥ [
| | Service A | | | | Service B | |
[[[[

¥ v v v v
I~ oo T J1—— ——ﬂll“j“‘I r——L——Ir———‘n """ 1r“‘L“1
: frieetor A : : seiector@ || : index | : security || : selectorc || : Selector O : : Qwery : : Mtntiw :
| | | | anagar

: F : : A | : f I : A | : y | : Y : : L : : i :

| I Ly he—1! I | [|

I Il Ly hy Selactors s | I i I I I

I ¥ i L 4) ¥ I | | L 4 | | ¥ I ¥ [¥ i

: Entity A I Cntity B : I Dalegares : | 4 : | Ertity C : Il Ertity D : Il Entities : 1| Entities :

I 4 : : / I : . I : T ! :] I : 'y I : k I : f Y I

| I | I | i Eritites | | i i i

I I Ly hy ro H I | | |

I I Ly oot H | | |

: v & ¥ ¥ ¥ I ¥ | : 3 I: 3 |: r |: L, S

: Table A : I| Tables : 1| Tables : I| Tables : 1| Tablec : || TableD : 1| Tables : 1| Tables :

| [| | | | |
e —————— - r———— - | P —— | . ! P [T Y T——

7.1. Database

The database design it's following the next principles:

* Try to define as much constraints into the database definition. If a column only alows 'T' or 'F' create a check
constraint to apply thisrule.

» The delete should run on cascade, this means deleting arow in atable will delete al related data. The main reason
isto keep the data consistency.

13

Architecture

e Useasingle numeric column for primary keys, populated by sequences. This makes the JPA and relational
maintenance easier and cleaner.

 All the primary keys are popul ated by a sequence.

» Several tablesincludes cmis_id or cmis_object _id, these columns with prefix cmis_ stores the CMIS (client point
of view) ids, likecmi s: f ol der orcni s: name.

» All Objectsin the repository have a property called Objectld that saves an opaque unique key. Thisinformation is
saved in two places, into the regular property structure and in the object table. Thisisfor checking the uniqueness
and for faster query searches.

7.2. Persistence Layer

The persistence layer relies on the database and it's using JPA and JDBC technologies like Hibernate or Spring
JDBC Template.

» Every Tablein the database has their correspondence JPA entity (except many to many relationship tables).
e Every Entity extendseu. t r ade. r epo. nodel . DBEnt i ty.

 All entities relationships will be defines as LAZY explicitly and when needed a query with join fetch with be
created.

 All the JPA queries will be named queries defined in the entity with annotations. See the section below for the
naming contentions.

7.2.1. Selectors

The selectors are responsible to retrieve information from the database. The Ent i t yManager could retrieve the
objects using the primary key, but most of the time the input parameters are different.

Thereis aselector class per Entity and all the methods in the selector should return instances of this Entity.

Note

All the queries executed must be named queries, thereis a proxy wrapping the Ent i t yManager that will
throw an exception if you try to use non named queries. See the next section for details about the naming
conventions of named queries.

By default the collections of the Entities are configured as LAZY, so the queries used in the selectors have to
explicitily indicatej oi n f et ch when needed.

Thereisasecond level cache configured for caching the Objects and the queries. Most of the Entities that are prone
to be static, like Reposi t ory or Cbj ect Type are cached, so don't usej oi n f et ch with these entities.

Verify thefilesehcache. xm and per si st ence. xnl to check what Entities are cached and how. The
Enti t yManager proxy isenabling the query cache if the named query prefix corresponds to a classnamein the
fileehcache. xnm .

7.2.2. Named queries conventions

The entity queries are named as:

e EntityNane. by Attri but e for'dry' entities, all propslazy loaded eg. per mi ssi on. by _narne for the
query to retrieve a Permission obj. with all associations lazily |oaded.

14

Architecture

e EntityNane.w t h_Associ at i on for entities with some associations resolved. Eg.
perm ssion.w th_parent foraPern ssi on object with the parent association resolved/fetched.

* EntityNanme. w t h_dependenci es for afetch with all associations resolved/fetched.
Similarly, the selector offers methods:
» get Enti t yNane for an entity with no associations resolved. Eg. get Per m ssi on

* getEntityNameW t hAssoci at i on for an entity with some associations resolved. Eg.
get Perm ssi onW t hPar ent

» | oadEnt it yNare for an entity with all assocs resolved. Eg. | oadPer mi ssi on

7.3. Delegates

The delegates are responsible to implement the interactions with the database that are not covered by the Entity
Manager and the selectors.

For example, the delegates implement the stream manipulation not covered by JPA.

7.4. Service layer

The service layer is the core of the application, all the businesslogic isimplemented at this level.

Thereisaclass per CMIS service type, and by design there is no interlinking between services. A service class
could use selectors, delegates and components but never will use another service.

7.5. CMIS layer

Thislayer is connecting the Service layer and the Apache Chemistry Open CMIS bindings. By design this later
should be as minimal as possible, it trandates the data coming from Chemistry bindings to our model Entities and
call the related service.

Thereisaclass per CMIS service type and several helper classes to transform from and to our model classes.

7.6. Package distribution

eu. trade. repo

Containsthe service classeu. t r ade. r epo. RepoSer vi ce that aggregates of all the services provided by the
server. The service layer was divided into classes and then combined into the previous class with a proxy pattern.

This package also contains the service factory eu. t r ade. r epo. RepoSer vi ceFact ory, that with
eu. trade. repo. web. Cm sLi f ecycl eBean both are the the entry point of the Apache Chemistry
OpenCMI S server bindings.

eu. trade. repo. del egat es

All the delegate classes are under this package.

A delegate is reponsible of atering the content of the database and retriving data with JDBC. Currently there are
delegates for managing the persist and retrival of documentsin the relational database, and the index generation.

15

Architecture

eu. trade. repo. i ndex
Y ou could find in this package and subpackages all the classes related with the indexing process.

For further details, read the chapter of Indexing.

eu. trade. r epo. nbean

The application is exposing throw JIM X valuable information about the usage of the server. This package includes
the Mbeans with these values, for example call count, total time, last time, average in 5,10 and 15 minutes, etc.

To see the complete list of Mbeans read the section IMX of this chapter.

eu. trade. r epo. nodel

This package contains the JPA2 entities. All entities extendsthe classeu. t r ade. r epo. nodel . DBEntitity.
Each entity may have named queries defined, please check the naming convention in the persistence layer section.
Entities

eu. trade. repo. nodel . Acl

eu. trade. repo. nodel . CM Shj ect

eu.trade. repo. nodel . DBEntity

eu. trade. repo. nodel . Obj ect Type

eu. trade. repo. nodel . Qbj ect TypeProperty

eu. trade. repo. nodel . Obj ect TypeRel ati onshi p

eu. trade. repo. nodel . Per m ssi on

eu. trade. repo. nodel . Per ni ssi onMappi ng

eu. trade. repo. nodel . Property

eu. trade. repo. nodel . Rendi ti on

eu. trade. repo. nodel . Repository

eu. trade. repo. nodel . Securi t yHandl er

eu. trade. repo. nodel . Wrd

eu. trade. repo. nodel . Wr dbj ect

eu. trade. repo. nodel . WordPosi ti on

eu. trade. repo. nodel . WrdPositionld

Enums

eu. trade. repo. nodel . Acti onPar anet er

16

Architecture

eu. trade. repo. nodel . Handl er Type
eu. trade. repo. nodel . | ndexi ngSt at e

eu. trade. repo. nodel . SecurityType

eu. trade. repo. query

Contains the Query component, that includes the parsing of the CMIS query and the JPA query generation based on
the parsed information.

The CMIS query isparsed using ANTLR 3, we've created a grammar file that generates the tree structure, AST.

The AST istraversed and generates a JPA query with the interface
j avax. persistence.criteria.CriteriaBuil der fromJPA.

eu. trade. repo. security

eu. trade. repo. sel ectors

All the selector are under this package

eu. trade. repo. service

Contains the main business logic of the application. Could be divided in several subpackages:

eu. trade. repo. servi ce This package isthe core of the application, this receives and returns Entity
instances. It's designed for not to have any dependency with Apache Chemistry OpenCMIS.

eu. trade. repo. servi ce. cn s This package uses the previous package and trandates the data coming from
the CMIS client to our model classes (JPA Entities). By design, this package should not contain logic.

eu.trade. repo. service. cni s. dat a. i n This package isresposible to transform the data structures from
the Apache Chemistry OpenCMISinto our model classes.

eu. trade. repo. servi ce.cm s. dat a. out Thispackage isresposible to transform the data our model data
structures to the Apache Chemistry OpenCMI S interfaces.

eu. trade. repo. service. i nterfaces Interfacesfor our services. theimplementation of these interfaces
are under the packageeu. t r ade. r epo. servi ce.

eu.trade.repo. stats

eu.trade.repo. util
Utility and miscellane package.
eu. trade. repo. web

The administration panel an the ECAS ticket generator code are under this package.

7.7. Server statistics
JMX

7.8. Logging

17

Architecture

8. Architectural views

To be updated in future release.

18

Chapter 2. Data model

Data model diagram and brief explanation of the tables and columns.

To be updated further in future release.

19

Chapter 3. Indexing Process

20

Indexing Process

1. Context

Theindex isan internal CMIS Server functionality. It is a piece of software at the service of the CMIS query service
and it isresponsible for populating the data structure needed by the query service to provide full text search in

documents.

createObject { being a document and having a stream }

deleteObject (being a document and having a stream) : i
-{ Object service
setContentStream . G N

ek \ S
deleteContentStream \ -
\\ =)
fire * invokes
\ .
AN T
populate TR
Y i
\
\ User
S \ 3
] S, LY -
populate S8 . 2 \\ e
v .y Y ;
Index information Object information o
/
.'r“
,/'
/
INvVoKes

Query service

21

Indexing Process

2. Introduction
2.1. What is it

Itisapart of the full text search system, responsible for preparing the information in away as to be retrieved as fast
as possible by the subsequent search.

The way it prepares information is areverse index (see section 'Reverse index’), in asimilar way as Lucen does (see
section 'Reciprocity between Repo index and Lucene’)

2.2. Requirements / Restrictions

» Theunavailability or failure of the index functionality should not affect the rest of CMIS server processes
(beyond the document at hand would not be indexed and would not be found as result of a'contains query)

* Multi-lingual documents can be indexed

» The generated index should be stored in the database to make it more powerful the searching process (pagination,
ordering, ...)

2.3. Integration

1. ATOMIC INDEX:
» Launched for every operation where the stream or metadata of a cmis:object are updated
 Uses transaction synchronization to avoid interfering with the rest of CMIS processes
2. BACKGROUND JOBS:
» Jobs scheduled to be launched at certain configured moments
 Jobsthat launch index operations:
« Clean orphan indexes job: delete all remaining information related to deleted cmis.objects

« Re-index content/metadata jobs: launch the index process for cmis.objects whose indexes are in error or not
done states

» Other jobs related to the index:

« Compact transient database job: it aims to improve resources usage. It closes and compacts internal index
database at certain configured momentsiif there are no index processes running.

22

Indexing Process

3. Reverse Index

Theindex stores words and statistics in order to make word-based search more efficient. Repo'sindex, as Lucene's,
falsinto the family of indexes known as inverted index. This means that given aword, the index can list the
documents that containsit. Thisisthe inverse of the natural relationship, in wich documents list words.

3.1. Definitions

The fundamental conceptsin Repo'sindex are index, indexable objects, content-index, metadata-index, indexable
property, word, word-object, word-position and dictionary.

An index contains a series of indexable objects

» Anindexable object is composed by a metadata-index and, optionally, by a content-index.

» A content-index is a set of words (the words contained in a cmis;object related stream)

» A metadata-index is a set of indexable properties (‘string’ cmis:properties related to the indexable object)
» Anindexable property isaset of words (the words contained in the cmis:property's value)

* Awordisastring

A word-object isaword in relation with an indexable object and, optionally, with an indexable property. It
contains frequency information.

» A word-position is the position of each occurrence of every word that make up an indexable object.
» A dictionary is aset of words

Each cmis:repository hasits own dictionary.

The same string in two different dictionaries is considered as two different words.

The same word in the content of an indexable object or in two different metadata-propertiesis considered a different
word-object.

3.2. Repo index structure

The structure of the Repo index is composed by 3 database tables and 4 fields about indexing state in the cmis.object
table.

» INDEX_WORD: contains the words and dictionaries.

* INDEX_WORD_OBJECT: contains word-objects together with information about word's frequency in the
indexable object.

» INDEX_WORD_POSITION: contains word-positions ordered within each word-object.

3.3. Reciprocity between Repo index and Lucene

Table 3.1. Reciprocity Repo - Lucene

Lucene Lucene definition Repo

Term A termisastring. Theterm Word, Word-object, Word-position
dictionary registers information about

23

Indexing Process

Lucene Lucene definition Repo

term's frequency (FreqDelta) and the

term's position (ProxDelta)
Field A field is anamed sequence of fields | Content, Metadata-property
Document A document is a sequence of fields. | Indexable object, M etadata

24

Indexing Process

4. Index components

4.1. Index entry points

The entry pointsto the index functionality are implementations of the Index interface, specifically subclasses of
Abstractindex: IndexImpl and subclasses of AbstractlndexBackgroundJob.

IndexImpl isinvoked by the CMIS aobject service to perform the indexing of single cmis:objects responding to user
requests to the CMIS server (atomic index).

Subclasses of AbstractlndexBackgroundJob are processes triggered by the system according to crontab-expressions,
that look for orphan or unfinished indexes and perform the convenient index operation for each of them.

Theindex entry points create IndexTasks with the needed information and pass them to the propper task executor
(using IndexExecutorSel ector), which in turn will use a ThreadPool to execute the operations specified by
IndexTasks. To coordinate the case of having multiple IndexTasks related to the same cmis object, the entry points
will use the IndexSynchronizer (thread save).

<<ava Class=>

<<lava Class=>
(®CmIsBaseObjectService

rapo index ok

xSynchFa ctur\,\n 1

<<Java nterfacer>
@ ndexTransactionsynchronizationFactory
<o tade repo index oyn °

5 indexConfig: Configuration

& ManagedSchedulerFactoryBean()
o0 a @ afterPropertiesSet():void

@ start():void

o gt 0.1 © stop(:void

© destroyvout

@ afterPropertiesSetinternal() void

synchronization
sex tsyne

o reposony
o objecti: Integer
o fieName: String
o fieSize: Bighteger

<<ava Class=>
G Abstractindex

eutrade repo ndax impl.

o updateObjsctindexinfos: boolean
o operation: IndexOperation
o operationType: ndexOperationType

(®CleanOrphanindexesJob

ro6 Loger o

& aTon_no:
o iFactory

%L0G: Logger

& IndexTransactionSynehronization() o indexDelegate: IndexDelegate.

© getRepostoryid()integer
@ setRepostoryd(nteger):void
@ getObjectid() nteger

@ setObjectig(int

= indexSynchr nizer

= indexExecutorSelector. ndexExecutorSelector & CeanOrpnaningexes.ob)

© executel:void

B registorindexTasksFororphandexList(List<integer=):void

exsyn

& Apstractindex()
© executelialowed(ndexTask; bookean) voidt

° nteger, Strin
° Integer Strin IndexOperation,boolean,Siring):voig

° Biginteger boolean,)

© getindexSynchronizer(yndexSynchronizer <lava Ciss>>

(©RetryContentindexesJob
e rade ego inde. b

5L0G: Logger
o indexDelegate: ndexDelegate

o executorsHelper: JobindexExecutorsHelper

Py <ava Chsee o indexConfigHolder: ndexConfighoder
®Indeximpl @A “5’:’?}? “"f X FRetryContentindexeslon()
[2 / o execute(void
- < onnER_10B_ ol NDEXES: Strng .

© beforaCommit(Booleanyvoid
© beforsCompietion():void
© afterCompletion(intyvoid

% OWNER_JOB_RETRY_CONTENT_NDEX_IN_ERROR: String
% QWNER_JOB_RETRY_WETADATA_NDEX_IN_ERROR: String
S df. DateFormat
o owner: String

& ndexinpl)
N)

e © onAppiicationEvent(indexEvent)-void

© equals(Object) boolean

pIE—————
4 oetOwner(sting) Strng

e ecutorsHelper
o indexConfigHolder: IndexConfigHolder

& Retrylietadatalndexes Jobi)
@ execute():void

=
0 sl void
°

4.2. IndexSynchronizer

The IndexSynchronizer is only astore for IndexTasks. Internally, it delegates to two
IndexOperationTypeSynchronizer objects: one to store METADATA index operation type tasks and another to store
CONTENT tasks.

Each IndexOperationTypeSynchronizer manages two maps:

» "executing map": the map that registers the IndexTasks that can be added to the task executor

 "waiting map": it is used to know if there is some other IndexTask (apart from executing one) programmed for a
CMI S object so the executing task hasto stop. Only the last arrived IndexTask is saved in this map.

25

Indexing Process

<<lava nterface=>

~<Java Class>>
@ Abstractindex
eurade epoindeximpl

5FL0G: Logger
F ATOMIC_DEX: String

& Abstractindex()
& executelfAllowed(IndexTask,boolean):void

bookean,Str

i

e

© getindexSynchronizer(yindexSynchronizer

-indexSynchronizer g

<<lava nterface>>
@ Index Synehronizer
eutrate epo.nsex

© puthQueus(indexTask booleany bookean
© doOnTaskFinished(indexTask) void

Y
© isindexidle() boolean

© popiatingTask(indexOperationType ntegery ndexTask

Type

-indexSynchronizer 81

<<lava Class=>
(@Index synchronizerimpl
eutrade repoingeximpl

o publisher: ApplcationEventPublisner

& indexsynchronizermpi()

@ isindexidle():boolean

@ putihQueus(indexTask boolsan).boolsan

© isother Ty

@ popWaitingTask(IndexOperationType, nteger) IndexTask.
@ doOnTaskFinished(indexTask):void

°)
B Operati

B Operati

<<lava Interface=>

-metadataSynchronizer
~chntahiSynchronizer

olo.1

<<Java Class>=
@ IndexOperationType Synchronizer

. repo index.impl.

& indexOperationTypeSynchronizer(}

® isOtherTaskWatting(Integer):boolean

@ isindexidle():boolean

® doOnTaskFinished(indexTask):void

@ putihQueue(indexTask boolean).boolean

& popWatingTask(integer}IndexTask

@indexTask.
ress

© getObiectid(:nteger
© setObjectid(nteger):void

© getRepostoryid(yinteger

© setRepostoryidinteger) void

© getFieName()String

© sefFieName(String)void

© gefFieSize() Bigiteger

© sefFieSize(Bighteger)void

© getOperation():indexOperation

© setOperation(indexOperation) void

© getoviner()String

© setOvmer(String)void

© hasToStop(boolean

© isUpdateOblectindexh fo()-boolean

© setUpdateObjectindexinfo(boolean) void

-ndexiatinglap

4.3. Index task

The index task isthe object that stores information about the CMIS object to

~taskFactory |0,

<<lava nterfaces>
O IndexTaskServiceFactory |
eu-tate repo.ncex

© gethgexService()ndexTask

“indexExecutorSeledier 0.1

<<lava nterface>>
@ IndexExecutorSelector

© gefTaskExecutor(ndexTask) TaskExecutor

<<lava Classz>
GIndexExecutorSelectorimpl
o ncex.impl

o smalTasksExecutor: TaskExecutor
o largeTasksExecutor: TaskExecutor
o metadataTasksExecutor. TaskExecutor

pr———t—
© selTesiExecutor(ndexTast) ToskExecutor

@IndexTa:

<<lava Class>>
skimpl

<po. nzexim

5

% L0G: Logger

o operatorFactory: IndexOperatorFactory.
objectid:Integer

reposioryid: Integer

operation: IndexOperation

fleName: String

fleSize: Bighteger
updateObjectindexinfo: boolean
owner. String

ndexTaskimpl()

9,9,0.0]z 0oz oo

© unp):void
@ doindex(:void

© hasTostop(boolean

© getObjectid(:nteger

© setObjecti(nteger):void

© getRepostoryid(Yinteger

© setRepostoryidinteger) void

© getOperation():indexOperation

© setOperation(indexOperation) void

© getFieName():String

© sefFieName(String)void

© gefFieSize() Bighteger

© sefFieSize(Biginteger)void

© isUpdateObjectindexh fo()-boolean

© setUpdateObjecthdexinfo(boolean)void
© getOwiner()String

© set0vmer(String)void

-indexCanfigHok

0.1

<lava Class>>
@ IndexConfigHolder
eu e repo indeximgl

' config: Configuration

& ndexConfigHolder()

@ getDocumentindexordLimitSize():int
@ getSegmentSize()int

@ getWordPageSize()int

© getivordPostionpageSize(yint

© oetbekiePagesize(int

@ getMaxindexAttempts():int

@ getRemainingPoolQueueThreshold():double
© getQueueSmalTasksCapacty(ynt

© oetQueueLarpeTasksCapacty(int

© getQueuclictadataTasksCapacty():int
@ getQueueSelectionLimitSize():int

be indexed and the index operation

to be performed, as well as the thread (Runnable) that executes the indexing process. It is responsible, based on its
information, for selecting the propper index operator wich has the knowledge of the indexing process.

26

Indexing Process

<<Java Interfaces= =«lava Class»==
@ IndexTask (& IndexTaskimpl

repo.indezc.impl

2u trade repo index

5FL0G: Logger

ail hronizer: hronizer
o objectid: Integer

o repositoryld: Integer

@ getObjectid():Integer

@ setObjectid(integer):void

@ getRepositoryld():Integer

@ setRepositoryld(Integer):void
@ getFileName():String

@ setFileMame(String):void

@ getFieSize() Biginteger

@ setFileSize(Biginteger) veid

o fileName: String

o fileSize: Biginteger

o updateObjectindexinfo: boolean
o owner: String

FindexTaskimpl()
&Find exTasklmpl{integer, Integer, ndexOperation, IndexSynchronizer)

@ getOperation():IndexOperation

@ setOperation{indexOperation). veid
@ getOwner(}):String
@ setOwner(String):veid

&Find exTasklmpl{integer, Integer, ndexOperation, String, Biginteger IndexSynchronizer)
&Find exTasklmpl{integer, Integer, ndexOperation, String, Biginteger, boolean, IndexSynchronizer)

@ hasToStop():boolean
@ isUpdateObjectindexinfo().beolean

@ setUpdateObjectindexinfo(beolean):void

@ run{):void
= dolndex():void
@ hasToStop():boolean

@ getObjectid(}-Integer
@ setObjectid(Integer):void

@ getRepositoryld():integer

@ setRepositoryld(integer):void

@ getOperation():IndexOperation

@ setOperation(IndexOperation):-void

@ getFileName():String

@ setFileName(String)void

@ getFileSize():Biginteger

@ setFileSize(Biginteger): void

@ isUpdate0Objectindexinfol):boolean

@ setUpdateObjectindexinfo(boolean):void
@ getOwner() String

@ setOwner(String)-void

-operation 1 -operatorFacto 0.1

==Java Enumerations=

(@ IndexOperation

eu.trad repo.index model

<<lava Interfaces>
¥ IndexOperatorFactory

2 trade repo.index

%F METADATA_INDEX: IndexOperation
—_— @ getOperator(indexOperationType):IndexPartOperator
%f METADATA_INDEX_DELETE: IndexOperation 5

%FEDNTENT_INDEX' IndexOperation
SOFEDNTENT_INDE)(_DELETE' IndexOperation
of code: int

<zlava Classs»
(9 IndexOperatorfactorylmpl
U trade.repo.index.impl.ops

Ac\ndExOperaliUn(inl.lndexO perationType, IndexOperationAction)
@ getCode()int

@ getType()indexOperationType

@ getAction():IndexOperaticnAction

—ﬂﬂlﬂnﬁ_.f -typel 0.1

<<Java Enumerations= =<Java Enumeration=>
3 IndexOperationAction (3IndexOperationType

= tras eu.trade.repo.index. mods|

oclnd exOperatorFactorylmpl{List<indexPartOperator=}

@ getOperator{indexOperationType):IndexPartOperator

-operatorilap | 0.*

<«<Java Interface>>
@ IndexPartOperator

- 2. trade.repo.index
Se repo index model PO

@ getOperationTypeSupported():IndexOperationType
@ deleteindexPart{indexTask) void
@ createindexPart({IndexTask) void

% INDEX: IndexOperationAction ol METADATA: IndexOperatienType
% DELETE: IndexOperationAction %F CONTENT. IndexOperationType

& Index0 perationAction() &in dexOperationType(}

4.4. Index Part Operator

Subclasses of thisinterface have the knowledge necessary to permform index operations (delete or create) according
to the operation type supported (metadata or content).

27

Indexing Process

4.5. Text analyzers

Extensions of Lucene analyzers, they are able to interpret atext, read it word by word, and process each word (i.e.
normalizing accents, upper/lower cases).

Because of the need of indexing multi-lingual documents, no stop word list is used.
Repo isusing two different anayzers:

» FullTextAnalyzer: thisisthe one used by the index (both content and metadata indexes). It processes contents
following the rules below:

« Word Break rules from the Unicode Text Segmentation algorithm, as specified in Unicode Standard Annex
#29. (StandardTokenizer)

¢ Converts alphabetic, numeric, and symbolic Unicode characters which are not in the first 127 ASCII characters
(the"Basic Latin" Unicode block) into their ASCII equivalents, if one exists. (ASCIIFoldingFilter)

e Converts upper case lettersinto lower case. (LowerCaseFilter)
» PropertiesAnalyzer: it is not used by the index. It is used to store normalized values for 'string' cmis.object

properties. It's similar to the Full TextAnalyzer except in the way it tokenizes content text. This analyzer emitsthe
entire input as a single token and thus, does not remove any punctuation characters.

4.6. Content extractor

Given aCMIS object identifier, the content's extractor constructs pipes that connect the stream related to that object
in database with the Tika's component that is able to interpret the stream as a text.

The whole stream is not loaded into memory but it loads chunks of the stream on demand.

28

Indexing Process

4.7. Transient index

It isan H2 database embedded in the server to store the temporal information resulting from the content extraction
process. This database consists of two tables: transient_index and index_transient._metadata.

4.8. Permanent index

It isthe set of the external database tables used to store the reverse index information. It consist of three database
tables: Index_word, Index_word_object and Index_word_position.

29

Indexing Process

5. Index processes

5.1. How words are extracted?

IndexTasks retrieve the information to be indexed from the CMIS database. It retrieves the cmis.object stream for
content tasks and the list of 'string’ cmis:object properties for metadata tasks. Then the information is processed and
saved to the transient index.

5.1.1. Content

,,,,,,,,,,,,,,,,

30

Indexing Process

5.1.2. Metadata

<anonymous>

bohdexTranseniContenibokgate | analyzer

contentiexOperator <anonymous>
Operator || ®

s || I
= ¢

@FullTextAnalyzer

property

© Property

Jevaxpesistence

<anonymous>
® stringReader|
van

stream
® attribute Source

@TransientdTO
. rep0ncec o

org apache wome.tl | e vade.s

‘transactionianager

idbcTempiate.

T \"

org spring

obtainPropertyListByObjectd(integ

processToTransientindesPart(ndexTask)boslean

creat ery(String Class <T=) TypedQuery<T=

gelResuILS)Listax>

creatsFullTextanaiyzer()Anslyzer

getTypedvalue()

tokenSiream(String Reader) TokenStream

StringReader(String)

TransientDTO(String it intnt nteger integer)

1 List<TransientDTO:

int]

batchUpdate(String SalPar:

commitTransactionStatus void

5.2. How the index is populated?

The processis as follows:

1. Theentry point create an IndexTask, specifying which index operation (index or delete index) it isto be

2. The entry point use the IndexSynchronizer.putlnQueue(lndexTask, waiting) method to check if it is possible to

performed and some other data about the cmis object.

repoService
(9 RepoService

su.trade. repo

indexTransactionSynchronization

(9 IndexTransaction Synchronization
eu. trade. repo.index. besyne

indeximp!
(@ Indeximpl

U trade. repo. index. impl

L]

createDocument(String Properties, String, ContentStream, Versioni

afterCommit():void

add the IndexTask to task executor.

 Ifitispossible, it addsthe index to the task executor, so the IndexTask.dolndex() will be executed.

]

1]

ngState, List«<String= Acl Acl ExtensionsData):String

executeOperation(Integer, Integér, String,Biginteger, boolean, IndexOperation): void

executelfAllowed{indexTask boolean pvoid

executelfallowed(integer,Integer, String, Biginteger,beolean, IndexOperation,beclean, String o void

31

Indexing Process

« If not, depending on the "waiting" argument, different things could happen:

» waiting = false: the index synchronizer does nothing with the task and neither the entry point, so the
IndexTask islost. It isthe way the background jobs act: if the IndexTask cannot be executed directly, itis
ignored. Thisisto avoid stopping an executing atomic task.

» waiting = true: the index synchronizer put the IndexTask in the "waiting map".

3. If the synchronizer returns that is possible to add the IndexTask to a task executor, then the
IndexExecutorSelector is invoked to determine which task executor to use. Thisis done based on the index
operation type and the file size to be indexed if the operation type is CONTENT. Thisway, thereis atask
executor for metadata tasks, another for small files and the last for big files to be indexed.

indexTransactionSynchronization indeximpl indexSynchronizer indexExecutorSelector <anonymous:> taskFactory indexTask
(9 IndexTransaction Synchronization (S Indeximpl @ IndexSynchronizer | | € IndexExecutorSelector) TaskExecutor ¥ IndexTaskServiceFactory || €3 IndexTask
eu.trade. repo.index. sync eu.trade repo.index.impl eu.trade. repo.index eu.trade repo.index org. springframework.core task eu.trade. repo.index. 2u.trade repo.index

executeOperation(integ er,lnteger,stnn g,Biginteger,boolean IndexOperation):void

executelfAlowed (\nteg‘er.lnteg er,String, Biginteger,boolean, IndexOperation, boolean, String):void
createTask(Integer, nteger, 5tring, Biginteger, boolean, IndexOperation, String) IndexTask

getindexService():Ind éxTask

setRepositoryldiinteger):void

setObjectidiinteg er}'vﬁ id

setOperation(Index0peration}:void

setFileMame(String): W:l id

setFileSize(Biginteger):void

setlpdateObjectindexinfo(boolean):void

setOwner(String):void

} exgcutelfAllowed(ndexTask, boolean j:void

putinQueus(indexTask, boolean) boolean

getTaskExecutor(indexTask) TaskExecutor

execute(Runnable):void

4. The IndexTask is executed.

 Create index part

32

Indexing Process

indexTaskimpl
(& IndexTaskimpl

£u.trade. repo.index.impl

indexSynchronizer
& IndexSynchronizer

eu.trade. repo. index

operatorFactory
& IndexOperatorFactory

eu.trade. fepo.index

contentindexOperator
(& AbstractindexOperator

eu.trade repo.index impl.ops

& JDBCIndexTr

jdbcindexTransientContentDelegate
ontentD:

jdbcindexDelegate

jpaindexDelegate

eu.trade.1epo.o

stz

(® JDBCIndexDelegat

eu.trade.repo.delegates

(® JPAIndexD

eu.trade. repo. delegates

run():void

doindex().void

getOperator{indexOperationType):IndexPartOperator

createlndexPart(ind exlTa sk)void

getObjec

Integer, Ind

OperationType):Ind

hasToStop():boolean

isOtherTaskWaiting(In

dex0OperationType, Integer) boolean

]
I

hasToStop():boolean

izl pdateObjectindexinfo():boolean

c Part{indexTask,

delste TransientindexPartByObjectidiinteger, int) void

deletePermanentindexPart(Integer,int, IndexOperationType):int

updateObject!

Integer, IndexingState, Ind

OperationType) void

hasToStop(): boolean

e e S e —

hasToStop():boolean

oroce:

i

i

hasToStop():boolean

L

hasToStop():boolean

» Deleteindex part

.
)

ipdateObj

nal{indexTask,

):void

s ToTransientIndexPart(index Task) boolean

storeToPermanentindex(integer, Integer):void

delste TransientindexPartByObjectidiinteger, int) void

Integer, { Ind

OperationType) void

]

33

Indexing Process

indexTaskimpl contentindexOperator jdbcindexDelegate trangactionianager jdbcTemplate jpaindexDelegate
(@ IndexTaskimpl | | G AbstractindexOperator | | (3 JDBCIndexDelegate | | (& AbstractPlatformTransactionManager | | (3 NamedParameterJdbcTemplate | | (3 JPAIndexDelegate
eu trade. repo.indexcimpl || eu.trade repo.index.impl.ops #u.trads. repo.delagates org. springframewark transaction. support org.springframework. jdbc. core. namedparam 2u.trade. repo.delegates

cleanindexPartiindexTask IndexingState) IndexingState

1

J delete TransientindexPartByObjectidiinteger, int):-void

hasToStop()boolean

i

hasToStop():boolean

deletePermanentindexPart{Integer,int, IndexOperationType :int

isMetadata(indexOperationType):boolean

obtainWordObjectPageToDelste(Integ ér. int,int, String):List=integer=

i

queryForList{3tring, SglParameterSource, Class<T>).List=T>

s 1

]: deleteByWordObjectidList(List=Integer= String)int

getTransaction(TransactionDefin ﬂiun}:TransadiunStatus

il

update(String, SglParameterSource):int

commit(TransactionStatus):veid ’H

isUpdateObjectindexinfo():boolean

updateObjec I.meger, IndexOperationType):void

When the task execution finishes, it invokes the I ndexSynchronizer.doOnTaskFinished() method.
5. The IndexSynchronizer removes the IndexTask from the "executing map" and fires and IndexEvent

6. The IndexImpl listen to that event, retrieves the waiting task for that cmis object from the IndexSynchronizer and
begins the process with this other task, if it exists.

Indexing Process

(@ IndexTaskimpl | (3 IndexSynchronizerimpl | | (3 IndexOperation

eu.r=

et

po index.impl su

indexExecutinghlap

4@4
Y

java.uti.concurrent

Ve

stoppedTask
@ IndexTask

Jew.ra

oo ndsx

<anonymous> |

publisher indeximpl

ntext

e

oo ndsx

org.springframenriweb.context suppont | |eu.r

repo.indeximpl

po index.imgl

dolndex(yvoid

doOnTaskFinished(IndexTask):void

po index.impl

do0NTaskFinished(indexTask):void

IndexE vent(Object)

remove(Object)V

getObjectid(}iinteger

publishEventiAppicationEvent):void

onApplicationEvent(Ej:void

onApplicationEvent(indexEvent) void

oid

35

Chapter 4. Query Service

36

Query Service

1. Introduction

The CMIS standard implemented by the Repo provides a type-based Query service which alows the querying and
discovery of datausing aquery language with asyntax similar to SQL. In order to achieve this, the query service
projects the CMIS Data Model into virtual tables and virtual columns, such that each Object-Type defined in the
Repo is projected into its own virtual table and each Object-Type-Property projected into a Virtual-Column of the
table:

cmis:document

+ cmis:author
+

+ [

Virtual Table

object_type
+id
+ query_name

+id
+ object_type id

\ »

CMIS Data Model mapped
RDBMS tables

obj ect_typ:a _property

+id +id
+ ob!ect_id _ + gbject_type_id
+ object_type_property_id + query_name

+ value

S

Projection of the CM1S Data Model into Virtual Tables
allowing querieslike:
select * fromcm s: docunent where cm s: author = 'John Doe'

where cmis;document and cmis:author are VIRTUAL tables and columns that don't exist as actual tablesin the
Repo RDBMS.

37

Query Service

The projection of Data Model tablesinto Virtual Tablesis achieved at runtime (query-time), by expanding the
received CMIS Query (on the Virtual Tables) into arelational query (onto the actual persisted tables representing the
Data Model)

eg.
select * from cmis.document ->

select * from object ojoin object_type ot on o.object_type id = ot.id WHERE ot.query_name=
‘cmis.document’

Transformation of the incoming CMIS query into the equivalent relational query is achieved by reading the
incoming query, extracting the relevant, semantically meaningful words (from now on, Tokens), e.g. 'select’, '*',
‘cmis.document’, then generating the equivalent relational query statements.

Processing the tokensin the received CMIS Query in order to generate the equivalent relational query is assisted

by another step between extracting the tokens from the query and generating the output, that of generating an
Abstract Syntax Tree (AST).

An AST provides an hierarchical (tree-based) representation of the query, where each node in the tree represents a
token in the input:

SELECT

* FROM WHERE

L
cmis:document °

cmis:name ‘John Doe’

Abstract Syntax Tree (AST) for query SELECT * FROM cmis:document WHERE cmis:name = 'John Do¢'

Generating an AST of the input query, which is then processed to generate the output relational query, provides
various advantages.

e The process of parsing the input and verifying that the syntax of the input query is correct, is decoupled from the
process of generating the output relational query. This greatly increases the clarity of the code, as the code for
reading the input character stream, identifying tokens and verifying that the syntax is correct is separated from the
the code which generates the output relational query.

38

Query Service

» Generating the output query can be simplified to a process of traversing the AST of the input query, and
producing equivalent relational statements for every node (token) encountered in the tree.

» Furthermore, using an AST alows the query service to optimize the query by detecting and removing/modifying
non-optimal usage structuresin the AST tree structure.

The output relational statement, actually sent to the underlying RDBM S and equivalent to the input CMIS Query
can then be generated by traversing (walking) the AST in arecursive, depth-first manner and directly producing
equivalent relational statements for every node (token) encountered in the tree.

Furthermore, on traversing each AST node and generating the equivalent relational statement, the generated SQL
can be customized to any supported RDBMS, thus allowing the Repo to utilize persistence solutions from various
providers. However, this approach is difficult to maintain, as the code generating the relational queries would have
to be modified/updated every time anew RDBMS provider was to be supported.

To solve thisissue, the Repo Query Service implementation utilizes the JPA Criteria API. The Java Persistence
Criteria API enables the definition of dynamic queries through the construction of object-graph-based query
definition objects - which provide atree-like representation of the relational query to be generated - then generates
the appropriate relational SQL query for the underlying RDBMS. As multiple providers can be plugged into the JPA
implementation, this allows the Repo Query Service to support multiple database systems out of the box without
requiring changes to the query generation code.

Therefore, the steps involved in processing a query request are the following:

1. Tokenize & Lextheinput CMIS Query: Read the input query, extract words according to the CMIS Query
Syntax (Lex), then generate Tokens corresponding to each word (each Token is alega word in the query syntax,
with extrainformation attached to it e.g. position - start/end - in the string, type of token etc).

2. Parsethetokens, build the CMIS Query AST.
3. Walk the CMIS query AST, build equivalent relational query JPA AST.

4. Walk therelational JPA AST, generaterelational query.

= Transformation of CMIS query AST to relational query AST

FROM oo
(7o) T

—> .
JOIM @

object o object_type ot

cmis:document

ot.query_name ‘cmis:document’

o.object_type_id object_type.id

SELECT * FROM cmis:document SELECT * FROM object o join object_type ot on o.object_type_id = ot.id
WHERE ot.query_name = "'cmis:document’

In the above steps, Step 4 is completely handled internally by the JPA provider implementation Steps 1 & 2 are
handled by ANTLR, while Step 4 is handled internally by the JPA provider implementation

39

Query Service

2. Query interfaces/entrypoints

To be updated in future release.

40

Query Service

3. Query processing steps

3.1. Step 1: Parse query and generate Abstract Syntax
Tree (AST)

Generate tokens (Lexer, Tokenizer), process tokens to generate token tree. ANTLR, lexer/parser generation

3.2. Step 2: Process (walk) AST and generate relational
query (JPA)

The AST generated in Step 1 (TBD: add link to previous section) provides atoken tree which can then be
transformed into arelational query by traversing the AST and generating the equivalent SQL syntax, e.g. 'from
cmis:.document’ -> from object join object_type on object_type.query_name = 'cmis.document’. However, each
relational store normally supports a SQL syntax variant for all but the most trivial queries. Therefore, in order to
support the widest variety of relational datastores (RDBM Ss) and not couple REPO to a particular store provider,
another intermediate step is required: rather than transform the AST directly into a database specific SQL query,
transform the AST into an AST representing the SQL language in most of it's variants, then generating the final
database-specific SQL from the SQL AST. -> JPA

41

Chapter 5. Policy Service

42

Policy Service

1. Introduction

Policies were introduced to include custom logic to the server. Following the CMI S specification, the policies are
subtypes of cni s: pol i cy and should be assigned to objects.

A policy is composed by two parts, the logic and thecmi s: pol i cy subtype.

Thelogic of the policy isimplemented in Java extending the abstract class

eu. trade. repo. policy. Abstract BasePol i cy. Thisclassimplements al the CMIS service methods.
For example, if you would like to apply some logic before a document is created, you should overwrite the method
creat eDocunent .

A cmi s: pol i cy subtypeis needed to link the Java code with a CM1S abject, it's also possible to parameterise the
policy behaviour with the policy attributes.

The policies could be triggered by:

* CMISservicecals

» Server events (startup, shutdown, create or delete repository, change configuration settings) *
 Another policy *

* Time-based *

Some examples of policies could be: quota, notification and initialise.

43

Policy Service

2. Policy life-cycle

On server startup all the policy types are registered in the system. New policy types cannot be added at runtime but
policies of the registered types could be created or modified depending on the security settings.

See below adiagram with the life-cycle of the policiestriggered by CMIS services.

@ Collect Objects (0..n)

Exception @ L Collect Policies (0..n) + Parents

> Build Context (0..n)
@ PRE L
Run Policy (0..n)

@ Run Service + Return Value
|

'y

L Build Context (0..n)

@ POST L

Run Policy (0..n)

1. All CMIS service executions are intercepted and each of the input objects involved are collected. There are
services without input objects, services with one single object and services with several objects. For example,
the Repository services do not have object parameters, Object serviceslike cr eat eDocunent has one (the
parent folder), and moveQbj ect hasthree objectsinvolved (the object to move, the source folder and the target
folder).

2. All the applied policies are retrieved for al the objects collected in the previous step. Policies are searched for the
current object and for al the parents up to the root folder.

3. For each policy found, a policy context is created and the policy logic is triggered. This step could be used for
filtering the CMIS service, and exception could be thrown stopping the execution.

4. The CMIS serviceis executed. The service call could fail and throw and exception, in this case no more policy
logic is executed.

5. For each policy found, a new context is created. The return value of the service call isincluded to allow
modifications. This step could be used for post-processing tasks, like logging or natifications. The logic of the
policy after the service call must not interrupt the execution.

Note

The order of the execution of the policies can not be enforced. Avoid implementing policies that require
other policies to be executed or any other kind of dependency. Policies logic should be understood as an
atomic and independent operation.

Policy Service

I mportant

Rule 1: the policy triggered will be executed considering the level of access of the creator of the policy
object. For example, if the policy object was created by Alice, the scope of the execution islimited to the
objects Alice can manage.

Rule 2: A user service execution could only be affected by a policy that the user can read. For example, if
the policy object is created with the ACE "editors" cmis:read, only the users with the principal 1d "editors"
will be affected by the policy process.

2.1. Policy Context

As described previously, a Policy Context will be available to the Policy logic with al the information needed for
the implementation.

Policy Object Object with the policy information. Often used to parameterise the behaviour of the policy
with the policy object properties.

Applied Object Object associated with the triggered policy, could be the direct object in the parameters list
of the service or an indirect object like one of the parent folders. The current logged user
may not have access to this object.

CMIS Session A session with the credential s of the policy object creator. Could be used for interacting with
the respository.

Policy State PRE or POST, used to differenciate if the logic must be executed before and/or after the
service call.

Return Value A reference to the return value of the service call. Only available in the POST step. Could be

used to modify the response to the CMIS client.

45

Policy Service

2.2. Example

P1: Quota Policy
(100Mb)

/

P2: Quota Policy

O 000 @—
/ P3: Notification Policy

D1

In the previous diagram, the circles represents folders, and the squares documents. The lines between these shapes
indicates the parent/children relationship.

A CMISclient starts the service call of the method cr eat eDocunent , the document to be created is D1. In the
parameters of the call, F3isindicated as parent folder.

Thefirst step in the policies life-cycle is to collect the parameters of CMIS service calls that references Objects, in
this example the only object involved is F3.

njects = { F3}

The next step isto find the policies associated to the previous set of Objects. The policy associated with the object
F3 isthe Natification policy P3. All the ancestors of F3 are consireded for searching policies. In the example the
folders F2 and F1 has policies associated, so the policies to be triggered on the creation of the document D1 are P1,
P2 and P3.

Policies = { P1, P2, P3}
A context is created for each of the policies:

context Pl = {
Policy Object: P1
Applied Object: F1
Policy State: PRE
}

context P2 = {
Policy Object: P2

46

Policy Service

Applied Object: F2
Policy State: PRE
}

context P3 = {
Policy Object: P3
Applied Object: F3
Policy State: PRE
}

All policies are triggered with the correspondent context. The order of the execution is managed by the server.
Policies logic must not relay on an specific order.

Asthe quota policies are applying afilter to the CMIS service, the logic will be triggered before the service, with
the PRE state. The notification policy logic, on the contrary, is going to be executed after the service because it
will notify the new document created. It is the responsability of the policy logic developer to use the values of the
context to encode the proper behaviour.

If during the creation of document D1 one of the quota policies contraintsis violated, for example the total space
of the folder F2 is bigger than 10Mb or the total space of the folder F1 is bigger than 100Mb, the policy logic will
throw an Exception and the execution will be stopped.

If al the policies finish successfully the CMIS service is executed, the cr eat eDocunent method istriggered and
the document D1 is created.

Thereturn value of cr eat eDocunent (theld of the new object created), is added to all the contexts. The stateis
also updated to POST and then all the policies are executed again.

context Pl = {
Policy Object: P1
Applied Qbject: F1
Policy State: POST
Return Val ue: D1

}

context P2 = {
Policy Object: P2
Applied Object: F2
Policy State: POST
Return Val ue: D1

}

context P3 = {
Policy Object: P3
Applied Object: F3
Policy State: POST
Return Val ue: D1

}

Thistime, the quota policies are not adding any extralogic in the POST state, but the notification policy will use the
return value of the service to compose the message to be sent.

47

Policy Service

3. How to implement a new policy

To be updated in future release.

48

Policy Service

4. Available policies

To be updated in future release.

49

Chapter 6. Configuration Parameters

The project is following the standard configuration format described in the deployment process (check the wiki for
further information).

All the resources are under / conf i g. Thefiles are prefixed with the environment and common files are under /
confi g/ common. During the deployment the files under / conf i g with the prefix of the target enviroment are
renamed, removing the prefix and are copied with the common files to the server.

In this chapter you could check the explanation of the entries in the configuration files.

50

Configuration Parameters

1. Environment files

Configuration files per environment

environment.properties and confidential.properties

In production environments the following keys are divided in two files, one with confidential entries and
other with the non-confidential ones. In development and testing environments all the keys are in thefile
envi ronnent . properti es.

SERVER _PATH
The address of the server.

For example: ht t ps: / /| ocal host : 8443

ADM N_TYPE
Defines the type of authentication mechanism for the admin module. Currently allowed valueis| ocal

| ocal : Default Spring security with InMemory authentication provider (admin/admin). No proxy ticket
generation. Seer epo_adnonConfi g. xm / admi n/ | ocal

REPO_DB_DRI VER
JDBC driver of the main database.

For example: or acl e. j dbc. Oracl eDri ver

REPO DB _URL
URL of the main database.

For example: j dbc: oracl e: t hi n: @ DESCRI PTI ON=(ADDRESS=(PROTOCOL=TCP) (HOST=ny-
db-server. oranet.net) (PORT=1530)) (CONNECT_DATA=(SERVI CE_NANME=r epo-
service.net)))

REPO_DB_USERNANE
Username of the main database.

For example: user name

REPO_DB_PASSWORD
Password of the main database.

For example; * * * * * *

REPO DB _VALI DATI ON
SQL query to validate the main database connection.

For example: SELECT 1 FROM DUAL

REPO_JMX_RM _HOST
IMX host

For example: | ocal host

REPO_JMX_RM _PORT
Port of the IMX

For example: 1099

51

Configuration Parameters

REPO_JMX_STATS_COLLECT_ON_START
Start collection data of usage on startup.

For example: t r ue

REPO _JMX_STATS DEFAULTS DI R
Path to save the usage statistics.

For example: / dat a/ appl i cati ons/ repo/ confs/ st ats/

NEST_DEV_ENABLED
Enable or disable nest-groups-dev authorisation handler.

For example: t r ue

NEST_TST_ENABLED
Enable or disable nest-groups-dev authorisation handler.

For example: t r ue

TRON_ENABLED
Enable or disable tron authorisation handler.

For example: t r ue

BUI LTI N_ENABLED
Enabl e the builtin authentication and authorization handler.

For example: t r ue

MOCK_AUTHENTI CATI ON_ENABLED
Enable or disable the Mock authentication handler.

For example: t r ue

ECAS_PT_AUTHENTI CATI ON_ENABLED
Enable or disable the ECAS proxy ticket authentication handler.

For example: t r ue

GACA_OPS_AUTHORI ZATI ON_ENABLED
Enable or disable the GACA operations authentication handler.

For example: t r ue

REPO _| NDEX_DB_DRI VER
JDBC driver for the trasient indexing system.

For example: org. h2. Dri ver

REPO | NDEX DB FI LE
Name of the file H2 will save the data.

I mportant

Itisnot allowed that REPO_INDEX_DB_FILE contains ~ in its value.

For example: / dat a/ appl i cati ons/ repo/ r epo. i ndex

52

Configuration Parameters

REPO _| NDEX_DB_URL
URL of the transient indexing system.

for example: j dbc: h2: fi | e: ${ REPO_| NDEX_DB_FI LE};

DB CLOSE_DELAY=-1; MODE=ORACLE; TRACE_LEVEL_FI LE=1;
TRACE_LEVEL_SYSTEM OUT=0; AUTO SERVER=TRUE; DB_CLOSE_ON_EXI T=TRUE;
MAX_COMPACT_TI ME=2000; CACHE_SI ZE=32768; MAX_LOG_SI ZE=4; LOCK_MIDE=0

REPO _| NDEX_DB_USERNANME
Username of the transient indexing system.

REPO _| NDEX_DB_PASSWORD
Password of the transient indexing system.

REPO _| NDEX_DB_VALI DATI ON
SQL query to validate the transient indexing database connection.

For example: SELECT 1

REPO | NDEX_H2_SERVER CACHED OBJECTS
Maximum number of objects that H2 can cach per session. If H2 needs to cach more objects than indicated here
when dealing with the results of a query, it throws the following exception: org.h2.message.DbException: The
object is aready closed [90007-164]

Default if not indicated: 512

REPO | NDEX_H2_SERVER_RESULT_SET_FETCH_SI ZE
Theresult set fetch size when using the server mode.

Default if not indicated: 512

REPO _| NDEX_ENABLED ATOM C
Controlsif the indexing process is executed after objects interactions. When true the indexing process adds a
job to the queue right after creating a document, updating the stream or delete.

For example: f al se

REPO _| NDEX_ENABLED BACKGROUND_JOBS
Controlsif the indexing background jobs will be executed.

For example: f al se

REPO _| NDEX BACKGROUND_JOBS COVPACT _DATABASE CRON_EXPRESSI ON
Crontab expression to define when the compacting of the indexing database will be performed.

Forexample 0 7 * * * 2

REPO _| NDEX_BACKGROUND_JOBS_CLEAN_ORPHANS_ CRON_EXPRESSI ON
Crontab expression to define when the delete orphan job will be executed. Index data without a document is
cosidered orphan data.

For examplee 0 0/ 15 * * * 2

REPO _| NDEX_BACKGROUND _JOBS_RETRY_ERRORS_CRON_EXPRESSI ON
Crontab defining when the system will execute the indexing of non-indexed documents.

For example 0 0/5 * * * 2

53

Configuration Parameters

REPO _| NDEX_BACKGROUND_JOBS_RETRY_ERRORS_MAX_ATTEMPTS
Number of retries during the indexing process.

For example: 2

REPO _| NDEX_BACKGROUND _JOBS_RETRY_ERRORS QUEUE_CAPACI TY_THRESHOLD
Free remaining capacity below which the index background job is not executed.

For example: 0. 15 indicates that if the background pool has less than 15% of its capacity available the job will
not be executed

REPO _| NDEX_THREAD POOL_SELECTI ON_LIM T_SI ZE
There are two pools for indexing. One for large documents and another one for small ones. This property
indicates which is the limit size to consider a document small or large (in bytes).

For example: 102400 means that documents smaller than 100K B are executed in the pool for small documents

REPO _| NDEX_THREAD POOL_SMALL_TASKS QUEUE_CAPACI TY
Maximum capacity of the queue of the thread pool for small documents. The system will reject new indexing
jobs when the queue reach this size. When this is happening, the retry job will take care of this document
indexes.

For example: 300

REPO | NDEX_THREAD POOL_SMALL_TASKS CORE_SI ZE
Number of initial indexing threads running in the pool for small documents.

For example: 2

REPO _| NDEX_THREAD POOL_SMALL_TASKS MAX S| ZE
Maximum capacity of the thread pool for small documents.

For example: ${ REPO_| NDEX_THREAD_POOL_SMALL_TASKS_CORE_SI ZE}

REPO _| NDEX_THREAD POOL_SMALL_TASKS THREAD PRI ORI TY
Priority for the indexing threads executed by the pool for small documents.

For example: 3

REPO _| NDEX_THREAD POOL_LARGE_TASKS QUEUE_CAPACI TY
Maximum capacity of the queue of the thread pool for big documents. The system will reject new indexing jobs
when the queue reach this size. When thisis happening, the retry job will take care of this document indexes.

For example: 100

REPO | NDEX_THREAD POOL_LARGE _TASKS CORE_SI ZE
Number of initial indexing threads running in the pool for big documents.

For example: 1

REPO _| NDEX_THREAD POOL_LARGE_TASKS MAX S| ZE
Maximum capacity of the thread pool for big documents.

For example: ${ REPO_| NDEX_THREAD_POOL_LARGE_TASKS_CORE_SI ZE}

REPO _| NDEX_THREAD POOL_LARGE_TASKS THREAD PRI ORI TY
Priority for the indexing threads executed by the pool for big documents.

54

Configuration Parameters

For example: 3

REPO_| NDEX_DB_MAX_ACTI VE
Maximum active connections of the index database connection pooling. Normally this should match with the
number of indexing threads.

For example: ${ REPO_| NDEX_THREAD_POOL_CORE_SI ZE}

log4j_repo.properties

55

Configuration Parameters

2. Common files

Common files used i all environments
idX_repo.xml
jmx_access.properties
jmx_password.properties
repo_adminConfig.xml
repo_dbConfig.xml
repo_indexConfig.xml
repo_indexDbConfig.xml
repo_jmxConfig.xml
repo_ormConfig.xml
repo_productConfig.xml

repo_securityConfig.xml

56

Chapter 7. Deployment Plan

Installation steps

This chapter describes the process of installing the application. The installation processis divided in three parts,
actions to be taken before the installation, the intallation of the application and the actions to be taken after the
installation.

The pre-installation steps should be done only once and are not covered by the automatic deployment process. This
should be executed manually because is altering configuration files of the system.

Theinstallation steps are covered by the standard deployment process. All this part could be execute automatically
with the deployment script or jenkins job.

The post-installation steps are administrative interacions with the application running. These operations could be
done at any time after the system is started. This covers changing funtional parameters or grant access to users.

57

Deployment Plan

1. Pre-installation

1.1. Compile APR and Tomcat native interface

Tomecat is able to be configured using several connectors. By default is using a HT TP connector implemented in
Java, to improve the performance, Apache Portable Runtime could be configured.

Tomcat can use the Apache Portable Runtime to provide superior scalability, performance, and
better integration with native server technologies. The Apache Portable Runtime is a highly
portable library that is at the heart of Apache HTTP Server 2.x. APR has many uses, including
access to advanced 1O functionality (such as sendfile, epoll and OpenSSL), OS level functionality
(random number generation, system status, etc), and native process handling (shared memory, NT
pipes and Unix sockets).

These features allows making Tomcat a general purpose webserver, will enable much better

integration with other native web technologies, and overall make Java much more viable as a fulll

fledged webserver platform rather than simply a backend focused technology.
—http://tomcat.apache.org/tomcat-7.0-doc/apr.html

First you need to download the APR package and compileit. Check the Apache APR website to download (http://
apr.apache.org/).

bzip2 -cd apr-1.4.8.tar.bz2 | tar xvf -

cd apr-1.4.8

export CFLAGS="-nb4"

./configure --prefix=/datal/applications/repo/test_apr_bhin
nmake

nkdir /data/applications/repo/test_apr_bin

nmake install

B PP LH B P

And then do the same with the Native runtime. Check the Apache Tomcat website to download (http://
tomcat.apache.org/download-native.cgi).

$ gzip -cd tontat-native-1.1.29-src.tar.gz | tar xvf -

$ cd tonctat-native-1.1.29-src/jni/native

$ export CFLAGS="-nb64"

$./configure --with-apr=/datal/applications/repo/test_apr_bin \
--W th-java-honme=/usr/jdk/instances/jdkl.7.0_40 \
--W th-ssl =yes \
--prefix=/datal/applications/repo/test _apr_hin

$ nake

$ make install

I mportant
The previousinstructions are for compiling 64 bits binaries, if you would like to compile for 32bits, don't
execute the command export CFLAGS="- nb4".

1.2. Configuring JVM parameters

For running properly you need to configure the server to alocate more memory in the permanent generation area
and other parameters.

export LD LI BRARY_PATH=/ dat a/ applications/repo/test_apr_bin/lib

58

Deployment Plan

export JAVA HOVE=/usr/j dk/instances/jdkl.7.0_40
export JAVA OPTS="-d64 - Xns1024m - Xmx8192m - XX: Per n5i ze=256m \
-Djava.library. path=/data/applications/repo/test_apr_bin/lib \
-Dj ava. awm . headl ess=true \
-Dj avax. net.ssl .trust Store=/usr/jdk/instances/jdkl.7.0/jre/lib/security/cacerts \
- Dor g. apache. chem stry. opencni s. st acktrace. di sabl e=true";
export PATH=$JAVA HOVE/ bi n: $PATH

Normally these instructions are saved in the file SHOVE/ . pr of i | e to be executed once we log into the system.

59

Deployment Plan

2. Installation
2.1. Creating the database

Following the standard structure of the deployment process, the database scripts to create all the needed objects are
under / t ar get/ rel ease/ db.

Thereis an extrafile to delete all the database objects. Y ou could use thisfile in case of uninstall.

2.2. Repository configuration files

Following the standard structure of the deployment process, the configuration filesare under / t ar get /
rel ease/ confi g/ prod.

Y ou need to copy these filesin the server path / dat a/ appl i cati ons/repo/ conf.

A confidential.properti es filemust be manually generated with the sensitive information and saved
under / dat a/ appl i cat i ons/ r epo/ conf . Check the following template:

Note

Verify that the path / dat a/ appl i cati ons/ repo/ conf isconfigured to be under the classpath of
Tomcat. To do so, edit thefile/ var / apache/ t ontat 7/ conf/ cat al i na. properti es.

Y ou must have an entry with the key conmon. | oader , if you haven't the mentioned path, add in the
begining and separate with the former value using a coma.

Example 7.1. Apache 7 conf/catalina.properties

comon. | oader =/ dat a/ appl i cati ons/repo/ conf, ${cat al i na. base}/li b,
${catalina.base}/lib/*.jar,${catalina. home}/lib, ${catalina. hone}/lib/
*.jar

2.3. Deploy war file

Following the standard structure of the deployment process, the application fileisunder / t ar get / r el ease/
r epo. war . Copy thewar fileunder / var / apache/ t ontat 7/ webapps.

Note

Before starting Tomcat, please delete the folders/ var / apache/ t ontat 7/ wor k and/ var/
apache/tontat 7/t enp.

60

Deployment Plan

3. Post-installation

3.1. Configure the repository instance

By default the repository server is empty, no repositories are created.

To create arepository, enter into the administration panel and select the option "create a new repository”.
To enter the repo admin page visit the following link:

http://[url_for_server]:8080/repo/admin

The repo server could host several repositories. Each repository could be configured independently. By default each
repository is configured with builtin security handler, review this setting and assign the appropiate handlers.

Check the security chapter for detailed explanation about the security tab.

3.2. ServerAlive page

To verify the application is running properly, a page was put in place to check the availability of the service:
http://[url_for_server]:8080/repo/serverAlive.jsp

61

Deployment Plan

4. Upgrade from version 1.0.0to 1.1.0

For upgrading an installation of version 1.0.0 to 1.1.0 check the following points:

» Update the .profile, the JAVA_OPTS value has changed. With SOAP binding, in case of error the stacktrace
information is disabled since version 1.1.0.

» Execute DB scripts.

» Rebuild normalized metadata. Metadatais indexed normalized since 1.1.0, existing content MUST be migrated.

4.1. Update .profile - IVM parameters

In version 1.0.0, the SOAP binding was exposing internal detailsin case of error. Since 1.1.0, the stacktrace in the
error message is disabled to avoid exposing implementation details.

To disable the stacktrace add the or g. apache. chem st ry. opencni s. st ackt race. di sabl e variablein
the VM options with any value. See the example below of the .profile content.

export LD LI BRARY_PATH=/ dat a/ applications/repo/test_apr _bin/lib
export JAVA HOVE=/usr/j dk/instances/jdkl.7.0_40
export JAVA OPTS="-d64 - Xns1024m - Xmx8192m - XX: Per n5i ze=256m \
-Djava.library. path=/data/applications/repo/test _apr_bin/lib\
-Dj ava. awm . headl ess=true \
-Djavax. net.ssl.trust Store=/usr/jdk/instances/jdkl.7.0/jre/libl/security/cacerts \
- Dor g. apache. chem stry. opencni s. st acktrace. di sabl e=true";
export PATH=$JAVA HOVWE/ bi n: $PATH

4.2. Execute the DB scripts

As part of the standard installation process, several DB scripts are needed to be executed to apply the following
changes:

/rel eases/ 1. 1.0/ Metadata is now indexed normalized.
db/ 01 _repo_net adat al nFul | Text Sear ch. sql

/rel eases/1.1.0/ Update on the score view.
db/ 02_repo_scor eVi ewUpdat e. sql

/rel eases/1.1.0/ Changes in the index tables and score view.
db/ 03_repo_i ndexAndScor eVi ewpdat e. sql

/rel eases/ 1. 1.0/ New index in change_event to speed up queriesin avery active repository.
db/ 04_r epo_changelLogl ndex. sql

4.3. Rebuild normalized metadata

Since version 1.1.0 the metadata is indexed normalized. Existing content from version 1.0.0 should be processed to
generate the misssing information. To achive this task atool was created.

1. Goto/rel eases/ 1. 1.0/ extral

2. Modify database connection propertiesin thefile: confi g/ repo- normal i zer. properties

62

Deployment Plan

3. Executefromthisdirectory j ava -j ar repo-normalizer.jar

4. Wait until the application finish (message: END normalizer will be printed.)

Note

Y ou can ignore this step if you plan to delete the repositories and create a new ones.

63

Deployment Plan

5. Upgrade from version 1.1.0to 1.2.0

For upgrading an installation of version 1.1.0 to 1.2.0 check the following points:
» Execute DB scripts.
» Migrate existing repositories type definitionsto CMIS 1.1.

» Migrate existing repositories datato CMIS 1.1.

5.1. Execute the DB scripts

As part of the standard installation process, several DB scripts are needed to be executed to apply the following
changes:

/rel eases/ 1. 2.0/ Missing index in table property.
db/ 01 repo_idx_property normalized val ue. sql

/rel eases/ 1. 2.0/ New table to store secondary types data.
db/ 02_repo_secondar yTypes. sql

/rel eases/ 1. 2.0/ New view with object ancestors used in in_tree() implementation.
db/ 03_repo_ancestors_vi ew. sql

/rel eases/ 1. 2.0/ Generates the data of the new property cm s: i sPri vat eWr ki ngCopy.
db/ 99 repo_gener at ePWCPr operty. sql
Important

If this script is executed before the migration of types definitions,
no new rows will be inserted. Execute this script after the types
definitions migration.

5.2. Migrate existing repositories type definitions to
CMIS 1.1

In CMIS 1.1 were added several new properties and types, this step will upgrade existing repositories.
1. Goto/rel eases/1.2. 0/ mgration/

2. Modify database connection propertiesin thefile: confi denti al . properti es

3. Execute from this directory i gr at e. bat

4. Wait until the application finish, areport will me printed with the changes applied

To execute the process Java 7 must be configured in the system.

The script mi gr at e. bat was created to be executed under Windows environments, but could be adapted to be
executed in other systems like Solaris replacing the path separator ; by : .

See below atypical output for the repository demo:

Deployment Plan

> cmis:item[mssing]
>>> adding cmis:item
> cmi s:secondary [m ssing]
>>> addi ng cm s: secondary
> cmi s:policy
m ssing properties [cn s:secondaryQbj ect Typelds, cm s:description]
>>> addi ng property cm s: secondaryQhj ect Typel ds
>>> addi ng property cm s:description
cm s: changeToken di fferent
>>> updating property cm s: changeToken
cm s: policyText different
>>> updating property cm s: policyText
> cm s: fol der
m ssing properties [cn s:secondaryQbj ect Typelds, cm s:description]
>>> addi ng property cm s: secondaryQhj ect Typel ds
>>> addi ng property cm s:description
cm s: al | owedChi | dObj ect Typel ds di fferent
>>> updating property cm s: all owedChi | dObj ect Typel ds
cm s: changeToken di fferent
>>> updating property cm s: changeToken
cm s:parentld different
>>> updating property cm s:parentld
> cmis:relationship
m ssing properties [cn s:secondaryQbj ect Typelds, cm s:description]
>>> addi ng property cm s: secondaryQhj ect Typel ds
>>> addi ng property cm s:description
.. cms:targetld different
>>> updating property cms:targetld
.. cmis:sourceld different
>>> updating property cm s:sourceld
cm s: changeToken di fferent
>>> updating property cm s: changeToken
> cm s: docunent
m ssing properties [cm s:isPrivateWrki ngCopy, cm s:secondaryCbj ect Typelds, cm s: desc
>>> addi ng property cm s:isPrivateWr ki ngCopy
>>> addi ng property cm s: secondaryQhj ect Typel ds
>>> addi ng property cm s:description
cm s: changeToken di fferent
>>> updating property cm s: changeToken

cm s:policy

cm s: fol der

cm s:rel ationship
cm s: docunent
cms:item

cm s: secondary

5.3. Migrate existing repositories datato CMIS 1.1

New property cm s: i sPri vat eWbr ki ngCopy must be populated with the proper value.

To do so, execute the DB script / r el eases/ 1. 2. 0/ db/ 99 _repo_gener at ePWCPr operty. sql .

65

Deployment Plan

I mportant

This script generates the data of the new property cni s: i sPri vat eWr ki ngCopy and must be
executed after the previous step (type definition migration).

66

Chapter 8. Security

67

Security

1. Introduction

The following sections will provide you with all the relevant information regarding the CMIS 1.0 compliant security
model currently implemented by Trade Document Repository. Please note that it is recommended to be familiar with
the CMIS 1.0 specification, especially with the following sections under the Domain Mode!:

Data Model / Repository / ACL Capabilities

Data Model / Object Type/ Object-Type Attributes

Data Model / Access Control

Services/ Common Service Elements/ Retrieving additional information (ACL, Allowable Actions)
Services/ Common Service Elements/ ACLs

Services/ ACL Services

The first section of this document starts explaining the default security configuration for a newly created repository,
introducing the key aspects to be considered in order to properly adapt such configuration for the intended use of the
repository. In the next section the CMIS services are grouped according to their security restrictions, explaining all
the relevant implementation details.

Later, the security handlers are presented, detailing the multiple options available to configure the repository with
its custom authentication and authorisation mechanisms. Finally, the last section coversthe CMIS ACL model,
introducing a complete set of examples that offers a clear idea about how to useiit. In addition to that, a detailed
description is given about the default ACL strategy offered by TDR.

68

Security

2. Security configuration by repository

2.1. Default security properties

As stated in the specification arepository can be configured in multiple ways to handle a diversity of security
models. In Trade Document Repository, when anew repository is created, the following security configuration
options are set by default:

ACL capability manage
ACL Propagation propagat e
Permissions cms:read

cmis:wite (impliescmi s: read)
cmis:all (impliescmi s:readandcnis:wite)

Permission Mapping The permission mapping table is set with the default values given by the specification.

Security handlers Security type: si npl e
Authentication: bui | tin
Authorisation: bui I tin

In addition to that, the repository's root folder is created using thecmi s: f ol der base type. Thisroot folder has
the following ACL.:

<cm s: acl >
<cm s: perm ssi on>
<cm s: princi pal >
<cm s: principal |l d>cm s: anyone</cm s: princi pal | d>
</cm s: principal >
<cm s: perm ssion>ms:all</cms:permssion>
<cm s:direct>true</cm s:direct>
</ cm s: perm ssi on>
</cm s: acl >

2.2. How to configure the repository's security

Once arepository has been created, the administration panel offers the ability to configure all the properties related
with the security. Depending on the environment:

https://[url_to_dev_server]:8443/repo/admin
https://[url_to_test server]:8443/repo/admin
https://[url_to_prod_server]:8443/repo/admin

The access to the administration panel is secured with credentials defined in repo_adminConfig.xml. The operations
currently defined are:

* REPO. Cr eat eRepo
» REPOQ. Del et eRepo

* REPOQ. Vi ewRepoSessi ons

69

https://[url_to_dev_server]:8443/repo/admin
https://[url_to_test_server]:8443/repo/admin
https://[url_to_prod_server]:8443/repo/admin

Security

* REPQO. Vi ewRepoSunmmary

* REPO. ChangeRepoCapabilities
* REPO ChangeRepoSecurity

» REPQO. ChangeRepoMappi ngs

* REPO. ChangeRepoPer ni ssi ons

2.2.1. Capabilities

In the capabilities tab of arepository, among other relevant capabilities for the repository, the ACL capability and
ACL propagation can be changed at any time.

nest_dev / NEST repo dev / NEST repository for development

Status F Capsbilities @ Renditions L Security w Permissions ¢ Mappings # Delete
Home
Create new rapository
. Get descendants: m
Sessions
Configursts :
SRR Gat folder tree: m

- - Content Stream anytime (=l
MEST repo dev updatability:
MEST repo tst
TRON repo dev Changes: =

TROM repo tst

k&

Renditions: rezd

Muttifiling:

Unfiling:

ersion specific filing:

PWC updatable:

PWC searchable:

All versions searchable:

'..H.'LEF}"Z D EeComEDIned

Join: N randoutear

ACL: manags

IR NIRIRIN

ACL Propagation: propagate

Save changes

a. ACL capahility none

This means that the repository does not implements any access control, so any authenticated user can perform
any action on any object in this repository. In addition, the ACL services are completely disabled.

b. ACL capability di scover

According to the specification this means that the repository implements some kind of access control and that the
ACL for an object can be retrieved but not modified.

70

Security

I mplementation Notes

In the case of TDR, the only access control system is derived from the object's ACL. Therefore, if the
di scover ACL capability is enforced for the repository in some point after its creation, thiswould imply
the following:

« If the ACL propagationis pr opagat e, then the new objects created under afolder will inherit the pre-
existent folder's ACL.

In the case this change was performed right after the creation of the repository, then every f i | ed object
would be created having the same ACL astheroot folder, i.e.. cm s: anyone -cmi s: al | .

The difference with ACL Capability none in that case would be just that anunf i | ed acl
cont rol | abl e object couldn't be created since there is no option to set its ACL.

 If the ACL propagationisobj ect onl y, thennew acl contr ol | abl e objects cannot be created.

For more information about ACL capabilities and propagation, see the ACL section.

2.2.2. Permissions

In the permissions tab of arepository, the set of permissions can be modified. The TDR implementation imposes
that the CMIS basic set of permissions(cmi s: read,cm s:witeandcm s: al |) MUST be present and with
the same tree structure, beingcm s: al | the only root node. However, this basic set can be extended adding new
custom permissions. Remember, a parent permission node means that the permission implies all the descendant
permissions.

nest_dev / NEST repo dev / NEST repository for development

Bb
[w}
i)
[17]
m

Status # Capabilities Renditions & Security = + Permissions 34 Mappings

@ Select a permission and do a right click. Only non basic permissions are editable.

« cmis:all
o cmis:write
= apicustoms
= ap:innerCustomd4
= cmis:read
o ap:customTom
o nnnn

Alternative permission tree

Note

Since the presence of the basic CMIS permissions is mandatory, the supported permissions capability
of the repository would be basi ¢ or bot h, but never r eposi t or y. Seethe definition of the

get Reposi t or yl nf o service for more information.

2.2.3. Permission Mappings

In the mappings tab of arepository, an administrator can modify the set of minimum permissions needed to perform
the set of actions defined by CMIS.

71

Security

nest_dev / NEST repo dev / NEST repository for development

Hom # Status Z Capabilities Renditions A Security Permissions ¢ Mappings i Delete
e
Create new repository
SEsEE Action cmisiread cmis:write cmis:all
Configuration canGetDescendants Folder
canGetChildren.Folder [}
NEST repo tst canGetParents Folder =} 1}
TRON repo dev canGetFolderParent Object |]
TRON repo fst canCreateDocument Folder [}

Please note that the set of permissions related with an action key cannot be empty and, in the case of multiple
permissions for the same key, please remember that a user only needs to satisfy one of them in order to be able to
perform the related action.

See the CMIS Services Security section to learn how the action keys are used to restrict the use of the CMIS
services.

2.2.4. Root Folder's ACL

Theroot folder's ACL isthe last component to take into account when configuring the repository’ s security. Asit
was stated, during the repository creation the root folder's ACL issettocmi s: anyone -cm s: al | , meaning
that any authenticated user can perform any action on the root folder. This default ACL can be modified in order to
restrict the access to the repository using any CMIS client.

Example 8.1.

appl yAcl (repold, rootFolderld, add[admin-cnis:all], renove[cmn s:anyone-
cms:all], ...)

72

Security

3. CMIS services security

3.1. Non secured

The following two repository services are non-secured, i.e. any user can access to them.

get Reposi t oryl nf os
get Reposi toryl nfo

3.2. Authenticated users only

The rest of the repository services require the user has been authenticated.

get TypeChi |l dren
get TypeDefinition
get TypeDescendant s

Additionally, the discovery services only require the user to be authenticated. However, in this case the service
response will be determined according to the user authorization.

query
get Cont ent Changes

Note

The query service returns only the objects that the user has access to their properties
(CAN_GET_PROPERTI ES). Additionally, regarding to the full text search, then expressions using
the clause cont ai ns only will return true for the objects the user has access to their content stream
(CAN_GET_CONTENT _STREAM.

3.3. Authorized users only

Following is the detailed list of the current supported services that are restricted according to the user authorization,
i.e. the set of user’s allowable actions determined by both, the object’s ACL and the repository’ s Permission
Mapping. As a general example,

Example 8.2.

Given an empty folder X ...

» With the following’s ACL
[userl / cms:wite], [cms:user2 / cms:all]

 Having the repository’s Permission Mappings
[canDel ete. nject / cmis:all], [canCreateDocuemmt. Folder / cms:wite]

» Having the repository’s Permissions tree
[cms:all > cmis:wite > cms:read]

Then:
» Theuserl cannot delete the folder X, becausecni s: wri t e do not satisfiescni s: al | .
* The user2 can delete the folder X.

» Both, the userl and user2, can create a document inside the folder X, becausecm s: witeandcmi s: al |
satisfies the minimum permissioncm s: wi te.

73

Security

3.3.1. Navigation Services

get Chi l dren
Action: CAN_GET_CHI LDREN

get Fol der Par ent
Action: CAN_GET_FOLDER_PARENT

get Obj ect Parent s
Action: CAN_GET_OBJECT_PARENTS

get CheckedQut Docs
Not yet implemented

get Descendant s
Action: CAN_CET_DESCENDANTS

get Fol der Tree
Action: CAN_CET_DESCENDANTS

Note

Theget Descendant s and the get Fol der Tr ee do not include the contents of the subfolders where
the user has no accessto (CAN_GET_DESCENDANTS), and also they do not include the documents the
user has no access to its properties (CAN_GET_PROPERTI ES).

3.3.2. Object Services

cr eat eDocunent
Action; CAN_CREATE_DOCUMENT

cr eat eDocunent Fr onSour ce
Actions; CAN_CREATE_DOCUMENT, CAN_GET_PROPERTI ES and CAN_GET_CONTENT _STREAM

cr eat eFol der
Action: CAN_CREATE_FOLDER

createPolicy
Action: CAN_CREATE_DOCUMENT

creat eRel ati onshi p
Action: CAN_CREATE_RELATI ONSHI P

get Al | owabl eActi ons
Action: CAN_CET_PROPERTI ES

get Obj ect
Action: CAN_CGET_PROPERTI ES

get Obj ect ByPat h
Action: CAN_GET_PROPERTI ES

get Properties
Action: CAN_GET_PROPERTI ES

get Rendi ti ons
Action: CAN_GET_PROPERTI ES

74

Security

get Cont ent St r eam
Action: CAN_CGET_CONTENT_STREAM

updat eProperti es
Action: CAN_UPDATE_PROPERTI ES

nove(bj ect
Action: CAN_MOVE_OBJECT

set Cont ent St r eam
Action; CAN_SET_CONTENT _STREAM

del et eCont ent St r eam
Action; CAN_DELETE_CONTENT _STREAM

del et e(bj ect
Action: CAN_DELETE_OBJECT

del et eTr ee
Action: CAN_DELETE_TREE

Notes

» Thecr eat eDocunent serviceisrestricted with the specified action when the document is filed
under afolder. If no parent folder is specified, then the document will be created only if the user is
authenticated and the Unf i | i ng capability is enabled for the repository.

e Theauthorization for the cr eat eDocurrent Fr onSour ce service requires to meet the following
conditions:

e The CAN_CREATE_DOCUMENT allowable action for the parent folder. In the case of an unfiled
document, the same restriction is applied asin the previous service.

* The CAN_CET_PROPERTI ES allowable action for the source document.

« In the case the source document has a content stream, then the CAN_GET_CONTENT _STREAM
allowable action for the source document.

» Thecreat ePol i cy serviceisrestricted intentionally with the action CAN_CREATE _DOCUMENT,
with the same restrictions regarding an unfiled policy.

* ThenoveQbj ect service may imply to change the ACL s of the moved document, and in the case of
moving a folder, the moved subtree. To see a complete description of the restrictions and consequences
of moving an object, please go to ACL section.

 Inthecase of deleting afolder, it will only be deleted in the case of an empty folder. In other case, the
del et eTr ee service should be used.

3.3.3. Filing Services
Not yet implemented.

3.3.4. Versioning Services

checkQut
Action: CAN_CHECK _QUT

75

Security

cancel CheckQut
Action: CAN_CANCEL_CHECK OUT

checkln
Action: CAN_CHECK_|I N

get Obj ect Of Lat est Ver si on
Action: CAN_CET_PROPERTI ES

get Properti esCf Lat est Ver si on
Action: CAN_GET_PROPERTI ES

get Al | Ver si ons
Action: CAN_GET_ALL_VERSI ONS

Notes

 For thefunctionsget Obj ect O Lat est Ver si on and get Properti esCf Lat est Ver si on the
action restriction is applied to the last version.

 For the function get Al | Ver si ons The action restriction is applied to the whole version series.
3.3.5. Relationship Services

Not yet implemented.

3.3.6. Policy Services

Not yet implemented.

3.3.7. ACL Services

get Acl
Action: CAN_GET_ACL

app! yAcl
Action: CAN_APPLY_ACL

76

Security

4. Security handlers

TDR defines two groups of security handlers. the authentication handlers, responsible for authenticating the users
that tries to connect to arepository: and authorisation handlers, responsible for determining the principal ids related
with the authenticated user and for resolving if the authenticated user isan admni n user for the repository.

4.1. Admin users

If an authenticated user is authorised as an adni n user, then no authorisation restrictions are applied. In other
words, an adni n user can perform any CMIS action in the sameway likeit hasacm s: al | permission granted
for every object in the repository.

4.2. Security Handlers by repository

The complete set of security handlers (at server level) are defined by the server’s configuration and cannot be
modified in runtime. However, the set of security handlers associated to a specific repository can be modified using
the administration panel.

nest_dev / NEST repo dev / NEST repository for development

A Status /# Capabilities Renditions A Security =+ Permissions > Mappings i Delete

Home
Create new repository
Security type: simple Enable multiple security handlers
Sessions
Configuration
Authentication” | builtin () [=]
yE——— Authorisation: | builtin () [~]

TRON repo dev

4.3. Simple vs. Multiple

Two security types are available for arepository in TDR. The simple security type, which implies the use of only
one authentication handler and only one authorisation handler in order to access to the repository; and the multiple
security type, that enables the use of several authentication and authorisation handlers.

77

Security

nest_tst/ NEST repo tst / NEST repository for test

Status # Capabilities Renditions A Security =+ Permissions 32 Mappings fii Delete

Home
Create new
repository Security type: multiple Disable multiple security handlers
Sessions
I TrEr Default Authentication: | builtin [~]
Default Authorisation: | gaca-ops [~]
NEST repo dev
Sl Althentieation | Bomaint | Enabled I8 The authentication domain is used for
NEST repo st qualify users in the principal ID of the ACL. Eq.
TRON repo dev mock ecas ecas/user01
TRON repo tst builtin
ecas-pt ecas
ilErEsiET Bomain | Enabled () The authorisation domain is used for
» qualify the roles and operations in the principal
builtin OFF ID of the ACL. Eg. gaca/MADB.CaseHandler
nest-groups-tst nest OFF
nest-groups-dev nest OFF

gaca-ops gaca

Please note that in order to change the repository security type, none specific entry must existsin the repository’s
ACLs. |.e the reference to the default principal Ids(cmi s: anyone and cmi s: anonynous) are allowed, but any
other principal 1d cannot be automatically translated from one type of security to the other. This“manua” change
would imply a database migration script for both the current ACL s and the repository’ s security type.

4.4. How the prefixes work for login and ACLs

4.4.1. Simple Security Type

If the security type of arepository is simple, then the user can access directly to the repository using its username
and password, also the principal |ds specified in the ACL entriesMUST NOT be prefixed.

For example, given anew repository with the builtin handlers and a user with username user 1 and password pwd1
which hastheroler egul ar User , it can connect to the repository using the following credentials:

 Default access to the unique handlers.
Username: userl
Password: pwdl

» Specific access to the unique handlers.

Username: builtin/builtin/userl

78

Security

Password: pwdl
And finally, an ACL entry like[r egul ar User — cmi s: wite] isapplicableto thisuser.

Y ou can see other examplesin this ACL section.

4.4.2. Multiple Security Type

In the other hand, if the security type of arepository is multiple then, in every connection to the repository, the user
can choose the authentication and authorisation handlers to be used. In order to do so, the user needs to prefix its
username with the names of the desired authentication and authorisation handlers. If no prefix is provided, then the
default authentication and default authorisation handler will be used.

Regarding to the principal lIds used in the ACLs for this type of security, every principal 1d MUST be prefixed with
the domain of the related security handler. Thiswill enable to work at the same time with principal 1ds defined by
multiple security handlers.

For example, given arepository as the one you can seein the previous picture:
 Default authentication handler: bui | ti n.

» Default authorisation handler: Open as admi n.

 Available authentication handlers: mock, bui | ti n.

Please note that the prefixes used for the login are the nanes of the security handlers while the prefixes for the
ACL entriesarethedonai ns of the security handlers.

In order to see a complete example of the login and ACL entries using the multiple security type, please go to this
ACL section.

4.5. Supported Authentication Handlers

Following isthe list of authentication handler types supported by TDR.

4.5.1. Builtin

Using the server configuration files, this handler defines afixed set of users, specifying the username and password.

This handler can be used to configure the access to the repository for an application that always uses the repository
in its own name, not on behalf of afina user. In thisway, is similar to the connection to a database where a read-
write connection is commonly used whereas aread only connection can also be configured.

Several builtin handlers can be configured providing separate users for different repositories. However, currently the
only builtin handler configured is for testing purposes.

4.5.2. Mock

Intended only for test purposes this authentication handler does not perform any authentication allowing the access
to every user.

4.6. Supported Authorisation Handlers

Following isthe list of authentication handler types supported by TDR.

79

Security

4.6.1. Builtin

Using the server configuration files, this handler defines afixed set of roles for afixed set of users, specifying aso
whether the user is an admin user.

This handler can be used to configure the access to a subset of authenticated users. For example, it can authorise a
subgroup of authenticated users to accessto a certain repository withcm s: r ead permission.

Several builtin handlers can be configured providing separate groups of roles for different repositories. However,
currently the only builtin handler configured is for testing purposes.

4.6.2. DbAuthorizationHandler

This authorisation handler use a database as the source for the user principal Ids. The configuration of these
handlers specifies the database connection properties as well as the query to retrieve the principal ids for the user,
aut horiti esByUser nameQuery. Thisquery must return a set of strings based on only one not-named String
parameter.

Example 8.3.
SELECT ROLE FROM ROLES VIEW WHERE USER = ?

Please note that the question mark can appear multiple times but the same value (the username) will be used for all
of them. Also, asin the example, it isagood practice to define a view in the source database instead of accessing to
concrete tables.

Finally, please note that this authorisation handler does not provide any admin user.

4.6.3. AdminDbAuthorizationHandler

Thisis an extension of the previous DbAut hor i zat i onHandl er , which also defines a query to find out if the
user is an admin user, admi nByUser nameQuer y. Inthis case, if the query returns a non-empty result set, the
user is considered as an admi n user.

Example 8.4.

SELECT ROLE FROM ADMIN_ROLES VIEW WHERE USER = ?

4.6.4. AdminFixedldsDbAuthorizationHandler

Thisis an extension of the previous DbAut hor i zat i onHandl er, which also defines a set of fixed admin
principal ids. Thisway, if one of the principal Ids of the user provided by theaut hori ti esByUser naneQuery
matches at |east one of the fixed admin principal ids, the user is considered asan adm n user.

4.6.5. AdminFixedldsDbAuthorizationHandler

This authorisation handler use a LDAP server as the source for the user principal 1ds. The configuration of these
handlers specifies the LDAP connection properties as well as the parameters for quering the user groups and,
optionally, the parameter to determine if the user is an admin user. The following isthe list of parametersto
configure this handler:

domain
The authorization handler domain. Mandatory

80

Security

java.naming.factory.initial
Thej avax. nam ng. Cont ext . | NI TI AL_ CONTEXT _FACTORY property. Optional, default to
com sun. j ndi .| dap. LdapC xFactory.

java.naming.provider.url
Thej avax. nam ng. Cont ext . PROVI DER_URL property. Mandatory.

java.naming.security.authentication
Thej avax. nam ng. Cont ext . SECURI TY_AUTHENTI CATI ON property. Optional, default to false.

java.naming.security.principal
Thej avax. nam ng. Cont ext . SECURI TY_PRI NClI PAL property. Mandatory.

java.naming.security.credentials
Thej avax. nam ng. Cont ext . SECURI TY_CREADENTI ALS property. Mandatory.

groupBaseDn
Base context for the group search. Mandatory.

groupFilterExpr
Filter expression for the group search. Note that, as maximum, only one parameter should appear in the filter
({ 0}), the user login name. Mandatory.

groupAttribute
The attribute in the results that contains the value for the user's groups. Mandatory.

groupRecursive
Whether the parent groups should be resolved or only the directly assign groups. Optional, default to false.

adminUsers
Whether the handler should resolve admin users. If not, theni sAdmi n() returns always false.

adminBaseDn
Base context for the admin user search. Mandatory only when adminUsersistrue.

adminFilterExpr
Filter expression for the admin search. Note that, as maximum, only one parameter should appear in the filter
({ 0}), the user login name. Mandatory only when adminUsersis true.

searchTimeLimit
Time limit for any search. Optional, default to 15 seconds = 15000.

81

Security

Example 8.5.

<aut hori zat i onHandl er >
<nane>Name</ nane>
<enabl e>t r ue</ enabl ed>
<descri pti on>Descri pti on</descripti on>
<cl ass>eu. trade. repo. security.inpl.LdapAut horizationHandl er</cl ass>
<properties>
<donmai n>t est </ domai n>
<j ava>
<nam ng>
<provi der >
<url >l daps://host:port</url >
</ provi der >
<security>
<princi pal >r eadOnl yUser Nane</ pri nci pal >
<credenti al s>r eadOnl yUser Passwor d</ cr edent i al s>
</security>
</ nam ng>
</java>
<gr oupBaseDn>ou=gr oups, dc=conpany, dc=conx/ gr oupBaseDn>
<gr oupFi | t er Expr >uni queMenber =ui d={ 0}, ou=peopl e, dc=conpany, dc=conx/ gr oupFi | t er Expr >
<groupAttri bute>entryDN</ groupAttribute>
</ properties>
</ aut hori zat i onHandl er >

82

Security

5. ACL

5.1. Introduction

This section covers all the relevant aspects about the access control implementation in TDR. After clearly define
the ACL entity in CMIS and explaining how the default CMIS principal ids are supported, several examples are
described showing how the repository’ s security configuration and the ACL s interact in the resolution of the
allowable actions over a concrete object.

Finally, the current implementation for the access control is described in detail.

5.2. ACL definition

CMI S defines an object’s ACL (access control list) as a set of ACES (access control entry), where an ACE is defined
by the following fields:

 Principal 1d: The ACE grants some permissions to the principal identified by this string.
» Permissions: The set of permissions (among the repository’s set of permissions) granted to the principal.
« isDirect: Whether this ACE has been applied directly to the object or isinherited from some parent’s ACL.

In TDR, the CMIS ACL istrandated internally to aflat representation where one ACE with N permissionsis
transformed in N ACEs with only one permission, asin the following example:

Example 8.6.

ThisACE:

[user — {cnmis:read, cmis:wite} — true]
Istransformed to:

[user — cnis:read — true]
[user — cms:wite — true |

Finally, given two ACEs for the same object, they will be equal if and only if the three fields are equal. V.g. the
three following ACEs are all different:

[user — cnis:read — true]
[user — cnis:read — false]
[user2 — cnmis:read — fal se]

5.2.1. Add and remove

From the previous definition, add ACEs to an ACL and remove ACESs from an ACL can be seen as basic set
operations:

{} + [u-p-t] = {[u-p-t]}

{[u-p-t]} + [u-p-t] :{[U—p-t]}
{[u-p-t]} + [u-p-f] = {[u-p-t], [u-p-f]}
{[u-p-t], [u-p-f]} - [u—p-f] = {[u-p-t]}
{[u-p-t]} - [u-p-f] = {[u-p-t]}
{{u-p-t]} - [u-p-t] = {}

83

Security

{} +{lu-p-t]} = {[u-p-t]}

{[u-p-t]} + {[u-p-t]} = {[u—p-t]}

{[u-p-t], [u-p-f]} + {[u2-p-f], [u-p-t]} = {[u-p-t], [u-p-f], [u2-p-f]}
{[u-p-t], u-p-f} - {[u2-p-f], [u-p-t]} = {[u-p-f]}

{[u-p-t]} = {[u-p-f]} = {[u-p-t]}

{[u-p-t]} = {[u-p-t]} = {}

5.2.2. Inherit

Additionally, an object only can inherit an ACE if that ACE is present in one of its parents as a direct or inherited
ACE.

5.3. Default CMIS principal ids

The following default principal Ids are defined by CMIS;
e cm s:anyone

Any authenticated user will have this among its set of principal Ids. Therefore, it can be used inthe ACL to
represent a permission granted to any user.

e cm S: anonynous
Currently none of the implemented authentication mechanism provides with anonymous authentication.
e Ccm s: user

According to CMIS, the repository MAY support the use of crri s: user asareference to the current logged
user. Currently thisis not supported by TDR and the client MUST specify the current user username.

5.4. Example of Use

For the detailed description of the scenarios used in the examples go to Annex 1.
5.4.1. Simple Security

5.4.1.1. Scenario 1

» Repository: repository0l

» Security Handlers: securityHandlers01

» Objects: objects01

The following assertions applied:

» user 1 can access with username: user 1 and password: pwd1

e user 1 canaccesswith username: bui | ti n/ bui | ti n/ user 1 and password: pwd1
* user 2 can access with username: user 2 and password: pwd2

e user canaccesswith username: bui | ti n/ bui | ti n/ user 2 and password: pwd2

» user 3 can access with username: user 3 and password: pwd3

84

Security

user 3 can accesswith username: bui | ti n/ bui |l ti n/ user 3 and password: pwd3
user 1 hasthefollowing principa Ids. user 1, cmi s: anyone, reader.

user 2 hasthefollowing principa Ids: user 2, cmi s: anyone, witer.

user 3 hasthefollowing principa Ids: user 3, cmi s: anyone, reader, owner.
All the users can read obj ect 01.

user 1 cannot access obj ect 02. Notethatt est - r ol es/ r eader cannot be applied to user 1 becausein
simple security the principal Ids are not prefixed.

Theuser 2 and user 3 can do anything with obj ect 01 and with obj ect 02 (write, modify, delete, apply
ACL, etc.).

5.4.1.2. Scenario 2

Repository: repository02
Security Handlers: securityHandlers01

Objects: objects01

The following assertions applied:

user 1 can access with username: user 1 and password: pwd1

user 1 can accesswith username: bui | ti n/ bui |l ti n/user 1 and password: pwd1
user 2 can access with username: user 2 and password: pwd2

user can accesswith username: bui | ti n/ bui | tin/ user 2 and password: pwd2
user 3 can access with username: user 3 and password: pwd3

user 3 can access with username: bui | ti n/ bui |l ti n/user 3 and password: pwd3
user 1 hasthefollowing principa Ids: user 1, cmi s: anyone, reader.

user 2 hasthefollowing principal Ids: user 2, cm s: anyone, witer.

user 3 hasthefollowing principa Ids: user 3, cmi s: anyone, reader, owner.
All the users can read obj ect 01.

user 1 cannot access obj ect 02.

user 2 can do anything with obj ect 01 (write, modify, etc.) but delete or apply ACL. Note that in the
permission mappings for this scenario, del et e and app! yAcl actionsrequirethecrmi s: al | permission.

Theuser 2 can do anything with obj ect 02 (write, modify, delete, apply ACL, etc.).
Theuser 3 can do anything with obj ect 01 (write, modify, delete, apply ACL, etc.).

user 3 can do anything with obj ect 02 (write, modify, etc.) but delete or apply ACL. Note that in the
permission mappings for this scenario, del et e and appl yAcl actionsrequirethecmi s: al | permission.

85

Security

5.4.2. Multiple Security

5.4.2.1. Scenario 1

Repository: repository02
Security Handlers: securityHandlers01

Objects: objects01

The following assertions applied:

user 1 can access with username: user 1 and password: pwd1

user 1 can access with username: bui | ti n/ bui | ti n/ user 1 and password: pwd1

user 2 can access with username: user 2 and password: pwd2

user can accesswith username: bui | tin/ bui | ti n/ user 2 and password: pwd?2

user 3 can access with username: user 3 and password: pwd3

user 3 can access with username: bui | ti n/ bui |l ti n/user 3 and password: pwd3

user 1 hasthefollowing principal Ids: t est - user s/ user1, cnis:anyone, test-roles/reader.
user 2 hasthefollowing principal Ids. t est - user s/ user2, cm s:anyone, test-roles/witer.

user 3 hasthefollowing principal Ids: t est - user s/ user3, cm s: anyone, test-roles/reader,
test-rol es/ owner.

All the users can read obj ect 01.

user 1 anduser 3 canread obj ect 02. Notethatt est - r ol es/ r eader can beappliedto user 1 and
user 3 because in multiple security the principal Ids are prefixed.

None of the users can modify obj ect 01 or obj ect 02. Notethat user 2, r eader ,wri t er or owner
cannot be applied to any of the users.

5.4.3. Admin users

5.4.3.1. Scenario 1

Repository: repository03
Security Handlers: securityHandlers01
Objects: objects01

The users access prefixing its usernamewith bui | t i n/ admi n/ .

The following assertions applied:

user 1 can access with username: bui | ti n/ admi n/ user 1 and password: pwd1
user can accesswith username: bui | ti n/ admi n/ user 2 and password: pwd?2

user 3 can accesswith username: bui | ti n/ admi n/ user 3 and password: pwd3

86

Security

user 1 hasthefollowing principal Ids: t est - user s/ user1, cm s:anyone.
user 2 hasthefollowing principal Ids: t est - user s/ user2, cm s:anyone.
user 3 hasthefollowing principal Ids: t est - user s/ user 3, cmi s: anyone.
user 1 isan admin user.

All the users can read obj ect 01.

user 1 can do anything with obj ect 02 (write, modify, delete, apply ACL, etc.). Note that user1isan admin
user.

None of the other users can modify obj ect 01 or obj ect 02. Notethat user 2, reader, witer or
owner cannot be applied to any of the users.

87

Chapter 9. Configuration

Capabilities detailed explanation
List of capabilities and effect on the repository.
Set of capabilities tested.

To be updated in future release.

88

Chapter 10. Versioning

Decisions taken in the versioning service:

If aversion series has a PWC, only the PWC could be updated (properties and stream). If a version series doesn't
have a PWC only the document flagged as |atest version could be updated (properties and stream). A document of
the version series could be deleted at any time.

Document the validations executed when a document in the version seriesis deleted. When deleting the latest
document, the previous one becomes the latest, in this case could exist another document in the folder with the same
name.

89

Chapter 11. Discovery

Current funtionality available in the discovery service.

Relaxed implementation of the CMIS standard: eg. several contains() and the posihility to use single value
operations in multiple properties.

Join is not available

90

Chapter 12. Extensions

List of extra capabilities that are not covered by CMIS

91

Extensions

1. Extension Data
1.1. Index Status

In order to provide information about the indexing status for the document objects the following extension datais
added under the TDR's namespace{ ht t p: / / [namespace_url]/ repo}:

* indexing
o dtate Enum:

NONE (Indexation pending)

| NDEXED (Indexed)

ERROR (Indexation error)

NON_| NDEXABLE (Not indexable)

PARTI ALLY_| NDEXED (Partially indexed. Word limit reached)

e tries Integer

92

Chapter 13. Administration panel
manual

To be updated in future release.

93

