

Date: 13/04/2022 1 / 27 Doc.Version: 1.0

DG DIGIT
Unit D.2

D04.01 – Release of eGovERA v2.0.0
including foundation and upscale
solutions for business users in a

DIGIT externally accessible
platform –

Documentation about the eGovERA porting in
AWS

Specific Contract n° 640 under Framework Contract n°
DI/07624-00 - ABCIV Lot 3: ISA² - 2016.32 European

Interoperability Architecture

Date: 13/04/2022
Doc. Version: 1.0

This template is based on PM² v2.5

Date: 13/04/2022 2 / 27 Doc.Version: 1.0

DOCUMENT CONTROL INFORMATION

Settings Value

Document Title: Documentation* about the eGovERA porting in AWS

Part of the deliverable →D04.01 – Release of eGovERA v2.0.0 including

foundation and upscale solutions for business users in a DIGIT externally

accessible platform

Project Title: Specific Contract n° 640 under Framework Contract n° DI/07624-00 -

ABCIV Lot 3: ISA² - 2016.32 European Interoperability Architecture

Document Author: Valerio MEZZAPESA

EC Project Officer: Raul Mario ABRIL JIMENEZ

External Contractor Project

Manager:

Valerio MEZZAPESA

Doc. Version: 1.00

Sensitivity: Internal

Date: 13/04/2022

Disclaimer
The information and views set out in this publication are those of the author(s) and do not
necessarily reflect the official opinion of the Commission. The Commission does not
guarantee the accuracy of the data included in this document. Neither the Commission nor
any person acting on the Commission’s behalf may be held responsible for the use which
may be made of the information contained therein.

© European Union, 2021

Date: 13/04/2022 3 / 27 Doc.Version: 1.0

REVISION HISTORY

The following table shows the development of this document.

Version Date Description Created by Reviewed by

1.0 13.04.2021 First Deloitte Cloud Migration and Managed

Service Version: Architectural Components
Presentation and description.

Costantino De
Petrillo

Mattia Galli
Jawad Lahouiny

Simone
FRANCIOSI

Valerio
MEZZAPESA

Date: 13/04/2022 4 / 27 Doc.Version: 1.0

Table of content

1 INTRODUCTION ... 5

1.1 Purpose of this document .. 5

1.2 Release date .. 5

1.3 List of acronyms used in this document .. 5

2 THE EGOVERA PORTAL ... 6

2.1 AWS Architecture overview ... 6

2.2 AWS Detailed architecture overview .. 7

2.3 AWS Networking ... 9

2.4 AWS Storage .. 10

2.5 AWS Compute ... 10

2.6 AWS Identity and access management (IAM) ... 11

2.7 Security AWS WAF ... 12

3 INFRASTRUCTURE AS A CODE .. 13

3.1 AWS Cloud formation templates .. 13

3.2 Source stage .. 13

3.3 Deploy Stage ... 13

3.4 Usage of development pipeline for source code updates 15

3.5 Manual approval stage .. 15

3.6 Deploy source stage .. 16

4 CONFIGURATION ACTIVITIES .. 17

4.1 Creation by hand .. 17

4.2 Create Pipeline MasterPipeline ... 18

4.3 Management and Maintenance... 18

5 BENEFITS OF USING INFRASTRUCTURE AS A CODE 21

6 BENEFITS OF USING AWS CLOUD FORMATION ... 22

7 FUTURE WORKS ... 24

7.1 EC2 Autoscaling group .. 24

7.2 AWS CloudFront .. 24

8 POLICIES ... 26

8.1 AWS-CodePipeline-Service .. 26

8.2 aws-Pipeline-Execution ... 27

8.3 IAM-PassRoleToCloudWatch .. 27

Date: 13/04/2022 5 / 27 Doc.Version: 1.0

1 INTRODUCTION

1.1 Purpose of this document

The scope of this document is to describe the architecture of the application deployment
in the AWS Cloud. The target audience is the European Commission IT administrators.
The objective of this architecture is to create a host environment for eGovERA application
and allow continuous development of its source code through an Amazon Code Pipeline

1.2 Release date

This version of the eGovERA Portal has been released on 13 April 2022.

1.3 List of acronyms used in this document

The following table summarises the terms and acronyms mentioned in the document text
for ease of reference.

Acronym Definition

DT Data Transfer

DNS Domain Name Server

S3 Simple Storage Service

SNS Simple Notification Service

IAM Identity and Access Management

MFA Multi Factor Authentication

Date: 13/04/2022 6 / 27 Doc.Version: 1.0

2 THE EGOVERA PORTAL

2.1 AWS Architecture overview

The environment is in AWS Region eu-west-1 (Ireland). Administrators of the host
environment are the Infrastructure as a Code Developers who can update the Cloud
Formation stack templates of the AWS Environment via uploading the new templates in
an AWS S3 bucket.

The Cloud Formation stack template is created with the use of three (3) files, Master.yaml,
Environment.yaml, Development.yaml. The relation of these files is father-son with

Master.yaml being the father file.

Application administrators can initially upload and then maintain the application’s source
code through the Application Code pipeline using the AWS service Code Commit (Git-
based). Before the source code is uploaded by AWS Code Deploy to update eGovERA
application, an email notification is sent (via an Amazon SNS topic) to the administrator
using Code Pipeline’s Manual Approval stage.

The Application Code Pipeline saves the updated code in the specified AWS Code Commit
repository. After the manual approval by the administrator, AWS Code Deploy uses the
CloudFormation stack combined with the AWS Elastic Beanstalk service to create the
eGovERA application’s environment with the last updated source code.

Figure 1 Infrastructure overview

Date: 13/04/2022 7 / 27 Doc.Version: 1.0

2.2 AWS Detailed architecture overview

Figure 2 Detailed architecture overview

Master.yaml File

Master.yaml is used as a father file of Environment.yaml and Development.yaml
templates. It is used by AWS Cloud Formation to create the initial Cloud Formation stacks
of the infrastructure as well as the developers' pipeline for the source code. Master.yaml
file also implements the dependency of the created stacks. Development stack depends
on the Environment stack which is created first.

Figure 3 Templates of the architecture

Date: 13/04/2022 8 / 27 Doc.Version: 1.0

Environment.yaml File

Environment.yaml this is the first nested stack created by Cloud Formation, implements
the AWS Cloud Infrastructure. Consists of the AWS Elastic Beanstalk environment which
will host the application.

• Parameters:

o WebApplicationName

o BeanstalkEnvironmentName

o InstanceType

o Email

• Resources:

o VPC

o Subnet

o InternetGateway

o RouteTable

o NatGateway

o Application

o Environment

o EnvironmentConfiguration

➢ InstanceTypes

➢ VPC

➢ Subnets

➢ ElasticLoadBalancer Subnets

➢ Notification Endpoint

➢ ServiceRole

➢ LoadBalancerType

➢ Autoscaling: DisableIMDSv1

➢ Autoscaling: IamInstanceProfile

➢ ManagedActionsEnabled

➢ PreferredStartTime

➢ UpdateLevel

Development.yaml File

Development.yaml is the second nested stack created by Cloud Formation, implements
the AWS Code Pipeline. The pipeline is composed of 3 steps: commit, manual approval,
deploy. After this step, the source code will be deployed into the running environment.

• Parameters:

o BranchName

o eGovRepositoryName

o eGovRepositoryDescription

o ApplicationName

o EnvironmentName

Date: 13/04/2022 9 / 27 Doc.Version: 1.0

o ManualApproval

o SNSTopic

• Resources

o CodePipelineArtifactS3

o CodePipelineArtifactS3Policy

o AmazonCloudWatchEventRule

o AppPipeline

▪ Stages

➢ Source: SourceCodeCommit

➢ Approval: ManualApproval

➢ Deploy: ElasticBeanstalkApp

o ArtifactStore

2.3 AWS Networking

To connect to eGovERA application traffic will first be received by Amazon Route 53 which
will send it through the Application Load Balancer. After traffic is allowed by AWS WAF
goes to the VPC and the Application Load Balancer that is targeting the EC2 Instance allows
the users to connect to the application.

Service Components Description

Amazon Route 53 1 Hosted Zone Cloud DNS web server service

Amazon VPC 1 Availability Zone
(AZ)

Virtual Private Cloud

Elastic Load Balancer Application Load
Balancer

Distributes incoming application traffic

Elastic IP Static IPv4 address EIP is attached with an EC2 after its creation

ENI Elastic Network Interfaces

Amazon Route 53: 1 Hosted Zone (cloud DNS web service)
Load Balancer: 1 Application Load Balancer
Amazon Virtual Private Cloud: 1 Internet Gateway, 1 Public Subnet, 1 Private Subnet

Public Subnet: 1 NAT Gateway
Private Subnet: 1 Security Group

Security Group: associated with the EC2 instances

AWS VPC Components

Availability Zone eu-west-1a

Internet Gateway Connects eGovERA application environment to the Internet

Availability Zone Components

Private Subnet NAT Gateway

Public Subnet Security Group associated with Ec2 instances

Date: 13/04/2022 10 / 27 Doc.Version: 1.0

EIP Address Components

Name eGovERABsEnvironment

Allocated IPv4 address (autogenerated)

Type (autogenerated)

Allocation ID (autogenerated)

Reverse DNS record (autogenerated)

Associated instance ID (autogenerated)

Network interface owner account (autogenerated)

Network Interfaces

Name eGovERA-ENI

Name eGovERA-ENI

Network interface ID (autogenerated)

Subnet ID (autogenerated)

VPC ID (autogenerated)

Availability Zone

Security groups (autogenerated)

Interface Type (autogenerated)

Description -

Instance ID (autogenerated)

Status in use

Public IPv4 address (autogenerated)

Primary private IPv4 address (autogenerated)

Owner 931566614796

2.4 AWS Storage

The following storages are used to download the output of the eGovERA application and
to store the source code of the pipeline.

AWS Data Transfer AWS S3 Bucket

DT inbound: Internet 10 GB per month DT inbound 5 GB per month

DT outbound: Internet 10 GB per month DT outbound 5 GB per month

DT Intra-Region: 10 GB per month -

2.5 AWS Compute

This Environment is a PaaS (Platform as a Service) that uses Elastic Beanstalk to deploy
instances.

The services implemented for Production/Non-Production environment are:

AWS Code Pipeline: 4 active pipelines used per account per month

Amazon EC2 Auto Scaling: monitor the health of running instance

 Name: awseb-e-faeaqqmqtc-stack-AWSEBAutoScalingGroup-1560E2J4XYJ2W

 Launch Template: AWSEBEC2LaunchTemplate_wZMm5ADWuYEF | Version 1

Date: 13/04/2022 11 / 27 Doc.Version: 1.0

Instances Status Desired
capacity

Min Max Availbility
Zone

1 - 1 1 1 eu-west-1a

Amazon EC2: Instance Type: m5.xlarge for Prod and t4g.large for Non-Prod

Storage Amount: 30 GB

Operating system: Linux

Pricing strategy: On-Demand Instances

Production Instance type:

Instance
Size

vCPU Memory
(GiB)

Instance
Storage
(GiB)

Network
Bandwidth
(Gbps)***

EBS
Bandwidth
(Mbps)

m5.xlarge 4 16 EBS-Only Up to 10 Up to 4,750

M5 instances are the latest generation of General-Purpose Instances powered by Intel
Xeon® Platinum 8175M processors. This family provides a balance of compute, memory,

and network resources, and is a good choice for many applications.

Non-Production Instance type:

Instance
Size

vCPU Memory
(GiB)

Baseline
Performan

ce / vCPU

CPU
Credits

Earned /
Hr

Network
Burst

Bandwidth
(Gbps)***

t4g.large 2 8 30% 36 Up to 5

Amazon EC2 T4g instances are powered by Arm-based AWS Graviton2 processors and
deliver up to 40% better price performance over T3 instances for a broad set of burstable
general-purpose workloads.

T4g instances accumulate CPU credits when a workload is operating below baseline
threshold. Each earned CPU credit provides the T4g instance the opportunity to burst with
the performance of a full CPU core for one minute when needed. T4g instances can burst
at any time for as long as required in Unlimited mode.

2.6 AWS Identity and access management (IAM)

AWS Identity and Access Management (IAM) provides fine-grained access control across

all AWS services.

Username Groups MFA Password age Active Key
age

matgalli@deloitte.it Admins Virtual 4 March 2022 4 March 2022

goraiopoulos@deloi
tte.gr

Admins Virtual 4 March 2022 4 March 2022

cdepetrillo@deloitte
.it

Admins Virtual 4 March 2022

Abrilra Admins None 28 February
2022

staramas@deloitte.
gr

Developers Virtual 31 March 2022

https://aws.amazon.com/ec2/instance-types/m5/
https://aws.amazon.com/ec2/instance-types/t4/

Date: 13/04/2022 12 / 27 Doc.Version: 1.0

Group name Users Permissions Creation time

Admins 4 AdministratorAccess 25 February 2022

Developers 1 AWSCodeCommitFullAccess,
CodePipelineFullAccess,IAMFullAcc
ess,
AWSCodePipelineApproverAccess,
AWSCodePipelineFullAccess

31 March 2022

Role name Trusted entities

AmazonCloudWatchEventRole AWS Service: events

CloudFormationRole AWS Service: Cloud Formation, Code Deploy

CodePipelineServiceRole AWS Service: codepipeline

AWSServiceRoleForAutoScaling AWS Service: autoscaling

2.7 Security AWS WAF

AWS WAF is a web application firewall that lets you monitor the HTTP(S) requests that are
forwarded to an Amazon Application Load Balancer.

AWS WAF also lets you control access to your content. Based on conditions that you
specify, such as the IP addresses that requests originate from or the values of query
strings, the service associated with your protected resource responds to requests either
with the requested content or with an HTTP 403 status code (Forbidden). You can also

configure CloudFront to return a custom error page when a request is blocked.

The Web Application Firewall (WAF) consists of a Web Access Control List named
ACLeGovERA that contains the following rules:

Vendor Rule Name Priority WCU Capacity

AWS Core rule set 0 700

AWS Know bad inputs 1 200

AWS Amazon IP reputation list 2 25

AWS Anonymous IP list 3 50

AWS Admin Protection 4 100

Date: 13/04/2022 13 / 27 Doc.Version: 1.0

3 INFRASTRUCTURE AS A CODE

3.1 AWS Cloud formation templates

The Pipeline to create the Cloud Formation Stacks consists of two (2) Stages, the first one

is the Source stage and the second the Deploy stage.

3.2 Source stage

Configuration of this stage defines the Action provider (AWS Code Commit), branch and
repository names. In this stage also is defined how the events are captured to be executed,
for this Amazon Cloud Watch Events service is used. The Master Pipeline to create the

Cloud Formation stacks can be changed/updated only manually (“Release change” button).

Figure 4 Source stage

3.3 Deploy Stage

In this stage the Environment (eGovERABsEnvironment) is first created due to the
declared dependency (“DependsOn: NestedStackB”). After creation of the Environment,
the creation of AWS Code Pipeline for source code begins.

In Deploy Stage the AWS Elastic Beanstalk Autoscaling Group, including the EC2 instance,
is first created along with the Security Group as defined in the Elastic Beanstalk
configuration template (Environment.yaml). After that the Development pipeline is created
to import eGovERA app source code to eGovERABsEnvironment.

Date: 13/04/2022 14 / 27 Doc.Version: 1.0

Figure 5 Deploy stage

Date: 13/04/2022 15 / 27 Doc.Version: 1.0

3.4 Usage of development pipeline for source code updates

The codecommit-events-pipeline for Development consists of three (3) Stages, first Source
Code Commit stage then a Manual Approval Stage and third the Deploy Stage.

Source code commit stage
The first stage is configured to use Amazon Cloud Watch Events to capture commit actions
that occur in the AWS Code Commit Repository (egoverarepository_v2) where the source
code of eGovERA app resides. During the initial start of the app the repository will be
empty. After the first commit of the code (“git push”) inside egoverarepository_v2, this
stage is triggered, and the pipeline procedure starts.

Figure 6 Source code commit stage

3.5 Manual approval stage

In the second stage of Application Code Pipeline an email is sent to the designated account.
For this procedure to complete and the updated code to be deployed in Beanstalk
Environment, an approval is needed in the source code pipeline stage (“ManualApproval”).
The approval can be given through clicking the URL sent in the email. This redirects to
AWS Code Pipeline console inside Development Pipeline so the administrator can approve

the commit there.

Date: 13/04/2022 16 / 27 Doc.Version: 1.0

Figure 7 Manual approval stage

3.6 Deploy source stage

In this last stage the committed source code updates the code running in Elastic Beanstalk
Environment with the updated one. This is achieved by providing the template with the
application name (eGovERAWebApp), that is created by AWS Elastic Beanstalk, and the
environment of the specified application (eGovERABsEnvironment).

Figure 8 Deploy stage

Date: 13/04/2022 17 / 27 Doc.Version: 1.0

4 CONFIGURATION ACTIVITIES

In this section is described the different roles and policies that are assumed to create the
environment using Cloud Formation.

An IAM role is an IAM identity that you can create in your account that has specific
permissions. An IAM role is similar to an IAM user, in that it is an AWS identity with
permission policies that determine what the identity can and cannot do in AWS. These
roles are used to delegate access to users, applications, or services that don't normally
have access to your AWS resources.

An IAM role does not have standard long-term credentials such as a password or access
keys associated with it. Instead, when assuming a role, it provides you with temporary

security credentials for your role session.

AWS service role

A role that a service assumes to perform actions in your account on your behalf. When
you set up some AWS service environments, you must define a role for the service to
assume. This service role must include all the permissions required for the service to
access the AWS resources that it needs.

4.1 Creation by hand

• Create IAM Role:
a. AWSServiceRoleForAmazonSSM:
i. Policy attached to System Manager – Inventory and Maintenance Windows
1. AmazonSSMServiceRolePolicy

b. AWSServiceRoleForAutoScaling:
i. Policy attached to EC2 Auto Scaling:
1. AutoScalingServiceRolePolicy

c. aws-ElasticBeanstalk-Ec2-Role:
i. Policy attached to EC2:

1. AWSElasticBeanstalkWebTier
2. AWSElasticBeanstalkMulticontainerDocker
3. AWSElasticBeanstalkWorkerTier

d. aws-ElasticBeanstalk-Service-Role:
i. Policy attached to ElasticBeanstalk:
1. AWSElasticBeanstalkEnhancedHealth
2. AWSElasticBeanstalkManagedUpdatesCustomerRolePolicy

e. CodePipelineServiceRole:
i. Policy attached to Codepipeline: AWS-CodePipeline-Service (source code)

f. AmazonCloudWatchEventRole:
i. Policy attached to CloudWatch: aws-Pipeline-Execution (source code)

g. CloudFormationRole:
i. Policy attached to CloudFormation:
1. AmazonS3FullAccess
2. ElasticLoadBalancingFullAccess
3. AmazonVPCFullAccess
4. AWSWAFFullAccess

5. AmazonSNSRole
6. AWSCodePipelineFullAccess

https://us-east-1.console.aws.amazon.com/iamv2/home?region=us-east-1#/roles/details/aws-ElasticBeanstalk-Ec2-Role-DEV
https://us-east-1.console.aws.amazon.com/iamv2/home?region=us-east-1#/roles/details/AmazonCloudWatchEventRole-DEV

Date: 13/04/2022 18 / 27 Doc.Version: 1.0

7. CloudWatchEventsFullAccess
8. AdministratorAccess-AWSElasticBeanstalk
9. AWSCloudFormationFullAccess
10. IAM-PassRoleToCloudWatch (source code)

• Create an S3 bucket
• Upload Environment.yaml and Development.yaml on s3 bucket created
• Check the TempalteURL on Master.yml (change it with current object URL)
• Create 2 repository on Code Commit

1. master-repo: To add Master.yml file, generate credentials, run command git

2. egoverarepository_v2: To add the source code of egovera (unzipped)

• Create Git credential

• Clone repository to your pc
• Insert egovera source code by using Git commands
• git add -A / git commit -m “adding egovera source code” / git push
• Insert Master.yml by using Git commands.
• git add -A / git commit -m “adding Master.yml” / git push

4.2 Create Pipeline MasterPipeline

1. Check eu-west-1 Ireland
2. Create a Default VPC
3. Select Code Commit as source provider with the repository that contains

Master.yaml, branch name master
4. Skip build stage
5. Select CloudFormation as deploy provider

6. Create or Update stack
7. Stack name: eGovERAStack
8. Artifact name: SourceArtifact
9. File name: Master.yml
10. Capabilities: CAPABILITY_NAMED_IAM
11. Role name: CloudFormationRole
12. The source code developer pipeline will create automatically with these stages: Code

Commit, Manual approval, Code Deploy (remember to approve).
13. Only for first release check if the source code files are inside the Code Commit

repository egoverarepository_v2.
14. Wait for the notifications (manual approval), approve.
15. Associate Load Balancer to WAF

4.3 Management and Maintenance

Inside the Master.yaml file you will find the creation of the nested stack that are connected
via TemplateURL.

NestedStackA is referred to the Development.yaml

NestedStackB is referred to the Environment.yaml

The URL is the only parameters that can be changed:
NestedStackA
TemplateURL: "https://stack-nidification.s3.eu-west-
1.amazonaws.com/Development.yml"
NestedStackB:
TemplateURL: https://stack-nidification.s3.eu-west-
1.amazonaws.com/Environment.yaml

Date: 13/04/2022 19 / 27 Doc.Version: 1.0

Master.yaml template

Nested Stacks Refers to TemplateURL

NestedStackA Development.yaml https://stack-nidification.s3.eu-west-
1.amazonaws.com/Development.yml

NestedStackB Environment.yaml https://stack-nidification.s3.eu-west-
1.amazonaws.com/Environment.yaml

Inside the Development.yaml file you will find all the information about the source code
development pipeline.

The only parameters that can be changed are the following:

Development.yaml file components:
1. Parameters

1.1. BranchName: CodeCommit branch name
 default: master

1.2. eGovRepositoryName: CodeCommit repository name of source
egovera default: egoverarepository_v2

1.3. eGovRepositoryDescription: CodeCommit repository Description

 default: Source code of egovera version 2
1.4. ApplicationName: CodeDeploy application name

 default: eGovERAApp
1.5. EnvironmentName: CodeDeploy environment name

 default: eGovERABsEnvironment
1.6. ManualApproval: Insert the comment of your Manual Approval

 default: Check SourceAction for
information about the commit

1.7. SNSTopic: Insert the arn of your SNS
 default: arn:aws:sns:eu-west-
1:<ACCOUNT_ID>:ManualApprovalSNS

Development.yaml template

Parameters Default Description

BranchName master Code Commit branch name

eGovRepositoryName egoverarepository_v2 Code Commit Repository name of
eGovERA source code

eGovRepositoryDescript
ion

Source code of egovera
version 2

Code Commit repository Description

ApplicationName eGovERAApp Code Deploy application name

EnvironmentName eGovERABsEnvironment Code Deploy environment name

ManualApproval Check Source Action for
information about the
commit

Insert the comment of your Manual
Approval

SNSTopic arn:aws:sns:eu-west-
1:931566614796:Manu

alApprovalSNS

Insert the arn of your SNS

All the information concerning the creation of the environment is contained in the
Environment.yaml file.

The only parameters that can be changed are the following:

Environment.yaml file components:

1. Parameters:

Date: 13/04/2022 20 / 27 Doc.Version: 1.0

1.1. WebApplicationName: describes the application name
 default: eGovERAWebApp-DEV/PROD

1.2. BeanstalkEnvironmentName: describes the name of the
environment created default: eGovERABsEnvironment-
DEV/PROD

1.3. InstanceType: describes the type of the instances
 default: t4g.large / m5.xlarge

1.4. Email: specify the email recipient for the Manual Approval sent by
the AWS SNS topic default: staramas@deloitte.gr

Development.yaml template

Parameters Default Description

WebApplicationName eGovERATestApp The application name

BeanstalkEnvironmentN
ame

eGovERATestBsEnvironme
nt

The name of the environment created

InstanceType t4g.large Type of the instances

Email staramas@deloitte.gr Email recipient for Manual Approval
sent by the AWS SNS topic

mailto:staramas@deloitte.gr

Date: 13/04/2022 21 / 27 Doc.Version: 1.0

5 BENEFITS OF USING INFRASTRUCTURE AS A CODE

Infrastructure as a Code is the process of provisioning and managing cloud resources by
writing a template file that is both human readable and machine consumable. This
approach standardizes the setup process, reduces chances of incompatibilities and
boosts systems’ overall performance. In AWS, the built-in choice for Infrastructure as a
Code is the AWS Cloud Formation service.

Visibility:

These templates serve as a reference of what resources are on the account, and what
their settings are. You do not have to navigate to the AWS console to check the
parameters.

Stability:

If you accidentally change the wrong setting or delete the wrong resource in the web
console you can break things. Infrastructure as code helps with management of the
resources used already or to be added, especially when it is combined with version
control.

Scalability:

With infrastructure as code, you can write it once and then reuse it when needed. One
template can be used as the basis for multiple services, in multiple regions, making it
easier to horizontally scale.

Security:

Infrastructure as a Code gives a unified template for how to deploy architectures. If you
create one well secured architecture, you can reuse it multiple times with each

deployment having the same security settings.

Transactional:

CloudFormation not only creates resources on your AWS account but also waits for them
to stabilize while they start. It verifies that provisioning was successful, and if there is a
failure it can roll the infrastructure back to a past known good state.

Date: 13/04/2022 22 / 27 Doc.Version: 1.0

6 BENEFITS OF USING AWS CLOUD FORMATION

AWS CloudFormation is an AWS service that uses template files to automate the setup of

AWS resources.

It can also be described as infrastructure automation or Infrastructure-as-Code (IaC) tool
and a cloud automation solution because it can automate the setup and deployment of
various Infrastructure-as-a-Service (IaaS) offerings on the AWS CloudFormation supports
virtually every service that runs in AWS.

In general, if a service runs on AWS, it is a safe bet that you can use CloudFormation to
automate its configuration and deployment.

Deployment speed:

When you create CloudFormation templates to manage how AWS resources are configured
and deployed, you can deploy multiple instances of the same resources instantaneously
using just one template. This approach leads to much faster deployment than you could
achieve if you had to manually set up each deployment by running commands on the CLI
(Command Line Interface) or pressing buttons in the AWS console.

Scaling up:

Even if you do not initially expect to deploy multiple instances of the same AWS resources,
CloudFormation templates are useful because they ensure that you can scale your
environment up quickly when the time comes. By keeping CloudFormation templates on
hand you can add more virtual machine instances or storage space.

When demand decreases you can take some of your deployments offline while still

retaining the ability to redeploy them quickly using CloudFormation when demand
increases.

Service integration:

A single CloudFormation template can manage the deployment of individual services or
resources and multiple resources. This management ability means you can use
CloudFormation to integrate different AWS cloud services.

Managing multiple services through a single template makes it easy to integrate AWS
services as you build out a complete cloud environment.

Consistency:

When you use CloudFormation templates to define and deploy AWS resources, you can
apply precisely the same configuration repeatedly. In this way, CloudFormation ensures
that your applications and services will be consistent and identical, no matter how many

instances you create.

Security:

Along similar lines, although CloudFormation is not a security tool, it can improve the
overall security of your AWS environment by reducing the risk of oversights or human
errors that could turn into breaches.

Easy updates:

In addition to deploying new resources, you can apply changes to existing resources with
CloudFormation templates. This ability simplifies the process of, for example, adding more
storage to a fleet of ec2 instances or changing access control rules.

Auditing and change management:

When you use CloudFormation to manage your infrastructure, you can track changes
based on which templates you have applied and how they change over time. Change

tracking in CloudFormation means that you will be able to determine how your AWS

Date: 13/04/2022 23 / 27 Doc.Version: 1.0

services and resources have changed over time without looking through logs to reconstruct
the timeline of updates.

Date: 13/04/2022 24 / 27 Doc.Version: 1.0

7 FUTURE WORKS

7.1 EC2 Autoscaling group

The aim of this project is to have an elastic environment that allows us to keep up with

future changes and needs. A possible upgrade could be the increase in the number of ec2
instances, which would lead to expand the amount of users who can simultaneously use
the application.

Amazon EC2 Auto Scaling is one way to maximize the benefits of the AWS Cloud. The
application gain the following benefits:

• Better fault tolerance. Amazon EC2 Auto Scaling can detect when an instance is

unhealthy, terminate it, and launch an instance to replace it. You can also configure
Amazon EC2 Auto Scaling to use multiple Availability Zones. If one Availability Zone
becomes unavailable, Amazon EC2 Auto Scaling can launch instances in another
one to compensate.

• Better availability. Amazon EC2 Auto Scaling helps ensure that your application
always has the right amount of capacity to handle the current traffic demand.

• Better cost management. Amazon EC2 Auto Scaling can dynamically increase and
decrease capacity as needed. Because you pay for the EC2 instances you use, you
save money by launching instances when they are needed and terminating them
when they aren't.

Figure 9 EC2 Auto Scaling Group

7.2 AWS CloudFront

It is also possible to improve the availability of resources by using the Cloud Front services
which delivers your content through a worldwide network of data centers called edge
locations. When a user requests content that you're serving with CloudFront, the request
is routed to the edge location that provides the lowest latency, so that content is delivered
with the best possible performance.

CloudFront speeds up the distribution of your content by routing each user request through
the AWS backbone network to the edge location that can best serve your content.
Typically, this is a CloudFront edge server that provides the fastest delivery to the viewer.
Using the AWS network dramatically reduces the number of networks that your users'
requests must pass through, which improves performance.

Date: 13/04/2022 25 / 27 Doc.Version: 1.0

Figure 10 AWS CloudFront

Date: 13/04/2022 26 / 27 Doc.Version: 1.0

8 POLICIES

8.1 AWS-CodePipeline-Service

1. {
2. "Version": "2012-10-17",
3. "Statement": [
4. {
5. "Action": [
6. "codecommit:CancelUploadArchive",
7. "codecommit:GetBranch",

8. "codecommit:GetCommit",
9. "codecommit:GetUploadArchiveStatus",
10. "codecommit:UploadArchive"
11.],
12. "Resource": "*",
13. "Effect": "Allow"
14. },
15. {

16. "Action": [
17. "codedeploy:CreateDeployment",
18. "codedeploy:GetApplicationRevision",
19. "codedeploy:GetDeployment",
20. "codedeploy:GetDeploymentConfig",
21. "codedeploy:RegisterApplicationRevision"
22.],

23. "Resource": "*",
24. "Effect": "Allow"
25. },
26. {
27. "Action": [
28. "codebuild:BatchGetBuilds",
29. "codebuild:StartBuild"

30.],
31. "Resource": "*",
32. "Effect": "Allow"
33. },
34. {
35. "Action": [
36. "devicefarm:ListProjects",
37. "devicefarm:ListDevicePools",

38. "devicefarm:GetRun",
39. "devicefarm:GetUpload",
40. "devicefarm:CreateUpload",
41. "devicefarm:ScheduleRun"
42.],
43. "Resource": "*",
44. "Effect": "Allow"
45. },
46. {
47. "Action": [
48. "lambda:InvokeFunction",
49. "lambda:ListFunctions"
50.],
51. "Resource": "*",

52. "Effect": "Allow"
53. },

Date: 13/04/2022 27 / 27 Doc.Version: 1.0

54. {
55. "Action": [
56. "iam:PassRole"
57.],
58. "Resource": "*",

59. "Effect": "Allow"
60. },
61. {
62. "Action": [
63. "elasticbeanstalk:*",
64. "ec2:*",
65. "elasticloadbalancing:*",
66. "autoscaling:*",

67. "cloudwatch:*",
68. "s3:*",
69. "sns:*",
70. "cloudformation:*",
71. "rds:*",
72. "sqs:*",
73. "ecs:*"

74.],
75. "Resource": "*",
76. "Effect": "Allow"
77. }
78.]}

8.2 aws-Pipeline-Execution

1. {
2. "Version": "2012-10-17",
3. "Statement": [
4. {
5. "Action": "codepipeline:StartPipelineExecution",
6. "Resource": "arn:aws:codepipeline:eu-west-

1:<ACCOUNT_ID>:codecommit-events-pipeline",
7. "Effect": "Allow"
8. }
9.]
10. }

8.3 IAM-PassRoleToCloudWatch

1. {
2. "Version": "2012-10-17",
3. "Statement": [
4. {
5. "Effect": "Allow",
6. "Action": [

7. "iam:PassRole"
8.],
9. "Resource": "

arn:aws:iam::<ACCOUNT_ID>:role/AmazonCloudWatchEventRole-
DEV/PROD"

10. }
11.]

12. }

